Question
upstudy study bank question image url

II sistema lineare di 4 equazioni in 5 incognite \( \left\{\begin{array}{l}x_{1}-x_{2}+x_{3}-x_{4}+x_{5}=1 \\ x_{2}+x_{3}+x_{4}-2 x_{5}=3 \\ x_{4}+x_{5}=-2 \\ 3 x_{4}+3 x_{5}+6=0\end{array}\right. \) A. non ammette soluzioni B. ammette \( \infty^{1} \) soluzioni C. ammette \( \infty^{3} \) soluzioni D. ammette \( \infty^{2} \) soluzioni A

Ask by Gibbs Watson. in Italy
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

El sistema tiene infinitas soluciones, \( \infty^{2} \).

Solution

Parece que has seleccionado la opción **A. No ammette soluzioni**. Sin embargo, analizando el sistema lineal proporcionado, la respuesta correcta es la opción **D. ammette \( \infty^{2} \) soluzioni**. A continuación, te explico por qué: ### Análisis del Sistema El sistema dado es: \[ \begin{cases} x_{1} - x_{2} + x_{3} - x_{4} + x_{5} = 1 \\ x_{2} + x_{3} + x_{4} - 2x_{5} = 3 \\ x_{4} + x_{5} = -2 \\ 3x_{4} + 3x_{5} + 6 = 0 \end{cases} \] 1. **Simplificación de las ecuaciones:** - De la cuarta ecuación: \[ 3x_{4} + 3x_{5} + 6 = 0 \implies x_{4} + x_{5} = -2 \] Esto coincide con la tercera ecuación, lo que indica que realmente solo tenemos **3 ecuaciones independientes**. 2. **Número de variables y grados de libertad:** - El sistema tiene **5 incógnitas** (\(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\)) y **3 ecuaciones independientes**. - Esto significa que tendremos **2 variables libres**, lo que resulta en una infinidad de soluciones parametrizadas por estas dos variables. 3. **Conclusión:** - Al tener más variables que ecuaciones independientes, el sistema no solo es **compatible** (es decir, tiene soluciones), sino que también **posee infinitas soluciones**, específicamente de la forma \( \infty^{2} \). ### Respuesta Correcta **D. ammette \( \infty^{2} \) soluzioni**

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

Per risolvere il sistema proposto, innanzitutto possiamo esplorare la compatibilità delle equazioni. Dopo aver ridotto le equazioni, ci ritroviamo con un sistema di equazioni lineari con più incognite che equazioni, il che suggerisce che potrebbe esserci un numero infinito di soluzioni. Analizzando più in dettaglio, vediamo che una delle equazioni può essere espressa in funzione delle altre due. Quindi, possiamo affermare che il sistema ammette un’infinità di soluzioni. Un numero di incognite superiori al numero di equazioni tende a indicare una soluzione libera. Qui, dato che ci sono 4 equazioni e 5 incognite, e dato che l'ultimo vincolo è ridondante (generando due vincoli equivalenti), possiamo affermare che ci saranno indefinitamente molteplici valori assunti da due variabili. Pertanto, la risposta corretta è **D. ammette \( \infty^{2} \) soluzioni**.

Related Questions

Point-Slope Form For each row, you and your partner will answer the question shown. Begin by reading each scenario. Using point-slope form, write the equation of the line that describes this scenario. Then, rewrite the equation in slope-intercept form. You and your partner should get the same answer for slope-intercept form. If you disagree, work together to reach an agreement. Partner A 1. In order to enter the state fair, there is an admission cost. Each game is \( \$ 3 \). Steven went to the state fair, played 4 games and spent a total of \( \$ 20 \) on admission and games. 2. At a chili cook off, people pay \( \$ 0.50 \) for each sample bowl of chili. The total cost was \( \$ 4.50 \) for 3 bowls of chili. 3. CJ loves Girl Scout cookies. He eats 3 cookies per hour. After 5 hours, there are 24 cookies left in the box. 4. An oil tank is being filled at a constant rate of 0.2 gallons per minute. After 10 minutes, there are 5 gallons of oil in the tank. 5. The total cost of renting a vacation home includes a deposit and a daily rental fee of \( \$ 125 \). A family rents a vacation home for 5 days and pays \( \$ 700 \). Partner B 1. In order to enter the state fair, there is an admission cost. Each game is \( \$ 3 \). Steven went to the state fair, played 10 games and spent a total of \( \$ 38 \) on admission and games. 2. At a chili cook off, people pay \( \$ 0.50 \) for each sample bowl of chili. The total cost was \( \$ 6.50 \) for 7 bowls of chili. 3. CJ loves Girl Scout cookies. He eats 3 cookies per hour. After 3 hours, there are 30 cookies left in the box. 4. An oil tank is being filled at a constant rate of 0.2 gallons per minute. After 5 minutes, there are 4 gallons of oil in the tank. 5. The total cost of renting a vacation home includes a deposit and a daily rental fee of \( \$ 125 \). A family rents a vacation home for 3 days and pays \( \$ 450 \). Talk About it! Return to Examples 1-5. Identify the \( y \)-intercept in each scenario. Explain the meaning of the \( y \)-intercept in terms of the context.
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy