Question
upstudy study bank question image url

\( 1 \leftarrow \begin{array}{l}\text { Let } \mathbf{u}=\langle 2,7\rangle \text { and } \mathbf{v}=\langle 4,2\rangle \text {. Express } 2 \mathbf{u}+9 \mathbf{v} \text { in the form }\langle a, b\rangle \text {. } \\ \begin{array}{l}2 \mathbf{u}+9 \mathbf{v}=\langle\square, \square\rangle \\ \text { (Simplify your answers.) }\end{array}\end{array} \)

Ask by Simpson May. in the United States
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( 2\mathbf{u} + 9\mathbf{v} = \langle 40, 32 \rangle \)

Solution

To express \( 2\mathbf{u} + 9\mathbf{v} \) in the form \(\langle a, b \rangle\), follow these steps: 1. **Given Vectors:** \[ \mathbf{u} = \langle 2, 7 \rangle \quad \text{and} \quad \mathbf{v} = \langle 4, 2 \rangle \] 2. **Calculate \( 2\mathbf{u} \):** \[ 2\mathbf{u} = 2 \times \langle 2, 7 \rangle = \langle 2 \times 2, 2 \times 7 \rangle = \langle 4, 14 \rangle \] 3. **Calculate \( 9\mathbf{v} \):** \[ 9\mathbf{v} = 9 \times \langle 4, 2 \rangle = \langle 9 \times 4, 9 \times 2 \rangle = \langle 36, 18 \rangle \] 4. **Add the Results:** \[ 2\mathbf{u} + 9\mathbf{v} = \langle 4, 14 \rangle + \langle 36, 18 \rangle = \langle 4 + 36, 14 + 18 \rangle = \langle 40, 32 \rangle \] **Final Answer:** \[ 2\mathbf{u} + 9\mathbf{v} = \langle 40, 32 \rangle \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To express \(2 \mathbf{u} + 9 \mathbf{v}\) in the form \(\langle a, b\rangle\), we first calculate \(2 \mathbf{u}\) and \(9 \mathbf{v}\): 1. For \(\mathbf{u} = \langle 2, 7 \rangle\): \[ 2 \mathbf{u} = 2 \langle 2, 7 \rangle = \langle 4, 14 \rangle \] 2. For \(\mathbf{v} = \langle 4, 2 \rangle\): \[ 9 \mathbf{v} = 9 \langle 4, 2 \rangle = \langle 36, 18 \rangle \] Now we add \(2 \mathbf{u}\) and \(9 \mathbf{v}\): \[ 2 \mathbf{u} + 9 \mathbf{v} = \langle 4, 14 \rangle + \langle 36, 18 \rangle = \langle 4 + 36, 14 + 18 \rangle = \langle 40, 32 \rangle \] So, \(2 \mathbf{u}+9 \mathbf{v} = \langle 40, 32 \rangle\).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy