\( 1 \leftarrow \begin{array}{l}\text { Let } \mathbf{u}=\langle 2,7\rangle \text { and } \mathbf{v}=\langle 4,2\rangle \text {. Express } 2 \mathbf{u}+9 \mathbf{v} \text { in the form }\langle a, b\rangle \text {. } \\ \begin{array}{l}2 \mathbf{u}+9 \mathbf{v}=\langle\square, \square\rangle \\ \text { (Simplify your answers.) }\end{array}\end{array} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To express \(2 \mathbf{u} + 9 \mathbf{v}\) in the form \(\langle a, b\rangle\), we first calculate \(2 \mathbf{u}\) and \(9 \mathbf{v}\): 1. For \(\mathbf{u} = \langle 2, 7 \rangle\): \[ 2 \mathbf{u} = 2 \langle 2, 7 \rangle = \langle 4, 14 \rangle \] 2. For \(\mathbf{v} = \langle 4, 2 \rangle\): \[ 9 \mathbf{v} = 9 \langle 4, 2 \rangle = \langle 36, 18 \rangle \] Now we add \(2 \mathbf{u}\) and \(9 \mathbf{v}\): \[ 2 \mathbf{u} + 9 \mathbf{v} = \langle 4, 14 \rangle + \langle 36, 18 \rangle = \langle 4 + 36, 14 + 18 \rangle = \langle 40, 32 \rangle \] So, \(2 \mathbf{u}+9 \mathbf{v} = \langle 40, 32 \rangle\).