Question
upstudy study bank question image url

Coterminal Angles Determine TWO coterminal angles for the following degree or radian. \( \begin{array}{ll}\text { 5. } 85^{\circ} & \text { 6. } 375^{\circ} \\ \text { 7. } \frac{6 \pi}{7} & \text { 8. } \frac{10 \pi}{3}\end{array} \)

Ask by Burns Young. in the United States
Dec 31,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

Coterminal Angles: 1. **85°** - \(445^\circ\) - \(-275^\circ\) 2. **375°** - \(735^\circ\) - \(15^\circ\) 3. **\(\frac{6\pi}{7}\) radians** - \(\frac{20\pi}{7}\) - \(-\frac{8\pi}{7}\) 4. **\(\frac{10\pi}{3}\) radians** - \(\frac{16\pi}{3}\) - \(\frac{4\pi}{3}\)

Solution

To find coterminal angles, you can add or subtract full rotations to the given angle. In degrees, a full rotation is \(360^\circ\), and in radians, it is \(2\pi\). Below are two coterminal angles for each given angle: --- **5. \(85^\circ\)** To find coterminal angles, add or subtract \(360^\circ\): 1. **Add \(360^\circ\):** \[ 85^\circ + 360^\circ = 445^\circ \] 2. **Subtract \(360^\circ\):** \[ 85^\circ - 360^\circ = -275^\circ \] **Coterminal Angles:** \(445^\circ\) and \(-275^\circ\) --- **6. \(375^\circ\)** To find coterminal angles, add or subtract \(360^\circ\): 1. **Add \(360^\circ\):** \[ 375^\circ + 360^\circ = 735^\circ \] 2. **Subtract \(360^\circ\):** \[ 375^\circ - 360^\circ = 15^\circ \] **Coterminal Angles:** \(735^\circ\) and \(15^\circ\) --- **7. \(\frac{6\pi}{7}\) radians** To find coterminal angles, add or subtract \(2\pi\): 1. **Add \(2\pi\):** \[ \frac{6\pi}{7} + 2\pi = \frac{6\pi}{7} + \frac{14\pi}{7} = \frac{20\pi}{7} \] 2. **Subtract \(2\pi\):** \[ \frac{6\pi}{7} - 2\pi = \frac{6\pi}{7} - \frac{14\pi}{7} = -\frac{8\pi}{7} \] **Coterminal Angles:** \(\frac{20\pi}{7}\) and \(-\frac{8\pi}{7}\) --- **8. \(\frac{10\pi}{3}\) radians** To find coterminal angles, add or subtract \(2\pi\): 1. **Add \(2\pi\):** \[ \frac{10\pi}{3} + 2\pi = \frac{10\pi}{3} + \frac{6\pi}{3} = \frac{16\pi}{3} \] 2. **Subtract \(2\pi\):** \[ \frac{10\pi}{3} - 2\pi = \frac{10\pi}{3} - \frac{6\pi}{3} = \frac{4\pi}{3} \] **Coterminal Angles:** \(\frac{16\pi}{3}\) and \(\frac{4\pi}{3}\) --- These coterminal angles share the same terminal side as the original angles when plotted in standard position.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

For \(85^{\circ}\), we can find coterminal angles by adding or subtracting \(360^{\circ}\). So, one coterminal angle is \(85^{\circ} + 360^{\circ} = 445^{\circ}\) and another is \(85^{\circ} - 360^{\circ} = -275^{\circ}\). For \(375^{\circ}\), we can again add or subtract \(360^{\circ}\). This gives us one coterminal angle of \(375^{\circ} - 360^{\circ} = 15^{\circ}\) and another of \(375^{\circ} + 360^{\circ} = 735^{\circ}\). For \(\frac{6 \pi}{7}\), to find coterminal angles we add or subtract \(2\pi\). So, adding gives us \(\frac{6 \pi}{7} + 2\pi = \frac{20 \pi}{7}\) and subtracting gives \(\frac{6 \pi}{7} - 2\pi = -\frac{8 \pi}{7}\). Lastly, for \(\frac{10 \pi}{3}\), one coterminal angle is \(\frac{10 \pi}{3} - 2\pi = \frac{4 \pi}{3}\) and adding gives \(\frac{10 \pi}{3} + 2\pi = \frac{16 \pi}{3}\).

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy