Coterminal Angles Determine TWO coterminal angles for the following degree or radian. \( \begin{array}{ll}\text { 5. } 85^{\circ} & \text { 6. } 375^{\circ} \\ \text { 7. } \frac{6 \pi}{7} & \text { 8. } \frac{10 \pi}{3}\end{array} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Extra Insights
For \(85^{\circ}\), we can find coterminal angles by adding or subtracting \(360^{\circ}\). So, one coterminal angle is \(85^{\circ} + 360^{\circ} = 445^{\circ}\) and another is \(85^{\circ} - 360^{\circ} = -275^{\circ}\). For \(375^{\circ}\), we can again add or subtract \(360^{\circ}\). This gives us one coterminal angle of \(375^{\circ} - 360^{\circ} = 15^{\circ}\) and another of \(375^{\circ} + 360^{\circ} = 735^{\circ}\). For \(\frac{6 \pi}{7}\), to find coterminal angles we add or subtract \(2\pi\). So, adding gives us \(\frac{6 \pi}{7} + 2\pi = \frac{20 \pi}{7}\) and subtracting gives \(\frac{6 \pi}{7} - 2\pi = -\frac{8 \pi}{7}\). Lastly, for \(\frac{10 \pi}{3}\), one coterminal angle is \(\frac{10 \pi}{3} - 2\pi = \frac{4 \pi}{3}\) and adding gives \(\frac{10 \pi}{3} + 2\pi = \frac{16 \pi}{3}\).