Simplify the expression. \[ \frac{9}{1-\sqrt{19}} \]
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To simplify the expression \(\frac{9}{1-\sqrt{19}}\), we will multiply the numerator and the denominator by the conjugate of the denominator, which is \(1 + \sqrt{19}\). So, we have: \[ \frac{9}{1 - \sqrt{19}} \cdot \frac{1 + \sqrt{19}}{1 + \sqrt{19}} = \frac{9(1 + \sqrt{19})}{(1 - \sqrt{19})(1 + \sqrt{19})} \] Now, calculating the denominator: \[ (1 - \sqrt{19})(1 + \sqrt{19}) = 1^2 - (\sqrt{19})^2 = 1 - 19 = -18 \] Next, we work on the numerator: \[ 9(1 + \sqrt{19}) = 9 + 9\sqrt{19} \] Putting it all together, we get: \[ \frac{9(1 + \sqrt{19})}{-18} = \frac{9 + 9\sqrt{19}}{-18} \] We can simplify \(\frac{9}{-18}\) to \(-\frac{1}{2}\): \[ -\frac{1}{2}(1 + \sqrt{19}) = -\frac{1}{2} - \frac{\sqrt{19}}{2} \] Thus, the simplified expression is: \[ -\frac{1}{2} - \frac{\sqrt{19}}{2} \]