Find the exact value of each of the following under the given conditions. \( \sin \alpha=\frac{7}{25}, 0<\alpha<\frac{\pi}{2} ; \cos \beta=\frac{8 \sqrt{89}}{89},-\frac{\pi}{2}<\beta<0 \) \( \begin{array}{llll}\text { (a) } \sin (\alpha+\beta) & \text { (b) } \cos (\alpha+\beta) & \text { (c) } \sin (\alpha-\beta) & \text { (d) } \tan (\alpha-\beta)\end{array} \) \( \begin{array}{ll}\text { (a) } \sin (\alpha+\beta)=-\frac{64 \sqrt{89}}{2225} & \text { (Type an exact answer using radicals as needed. Rationalize all denominators. Use integers or fractions for any numbers in the expression. Simplify your answer.) } \\ \text { (b) } \cos (\alpha+\beta)=\square & \text { (Type an exact answer using radicals as needed. Rationalize all denominators. Use integers or fractions for any numbers in the expression. Simplify your answer.) }\end{array} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To find the exact values, we start by determining the necessary trigonometric values based on the given information. 1. **Finding \( \cos \alpha \):** Using the Pythagorean identity \( \sin^2 \alpha + \cos^2 \alpha = 1 \): \[ \sin^2 \alpha = \left(\frac{7}{25}\right)^2 = \frac{49}{625} \] \[ \cos^2 \alpha = 1 - \frac{49}{625} = \frac{576}{625} \] \[ \cos \alpha = \sqrt{\frac{576}{625}} = \frac{24}{25} \] 2. **Finding \( \sin \beta \):** Given \( \cos \beta = \frac{8\sqrt{89}}{89} \), we also use the Pythagorean identity: \[ \cos^2 \beta + \sin^2 \beta = 1 \] \[ \sin^2 \beta = 1 - \left(\frac{8\sqrt{89}}{89}\right)^2 = 1 - \frac{64 \cdot 89}{7921} = 1 - \frac{5696}{7921} = \frac{2225}{7921} \] \[ \sin \beta = -\sqrt{\frac{2225}{7921}} = -\frac{\sqrt{2225}}{89} \] (Note: \( \sin \beta \) is negative because \( \beta \) is in the fourth quadrant.) 3. **Calculating \( \sin(\alpha + \beta) \):** Using the sine addition formula: \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] Substituting the values: \[ \sin(\alpha + \beta) = \frac{7}{25} \cdot \frac{8\sqrt{89}}{89} + \frac{24}{25} \cdot \left(-\frac{\sqrt{2225}}{89}\right) \] \[ = \frac{56\sqrt{89}}{1775} - \frac{24\sqrt{2225}}{2225} \] Common denominator for the two terms: \[ = \frac{56\sqrt{89} - 24\sqrt{2225}}{1775} \] 4. **Calculating \( \cos(\alpha + \beta) \):** Using the cosine addition formula: \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] \[ = \frac{24}{25} \cdot \frac{8\sqrt{89}}{89} - \frac{7}{25} \cdot \left(-\frac{\sqrt{2225}}{89}\right) \] \[ = \frac{192\sqrt{89}}{2225} + \frac{7\sqrt{2225}}{2225} \] \[ = \frac{192\sqrt{89} + 7\sqrt{2225}}{2225} \] So, the answers are: \[ \text{(a)} \sin(\alpha + \beta) = \frac{56\sqrt{89} - 24\sqrt{2225}}{1775} \] \[ \text{(b)} \cos(\alpha + \beta) = \frac{192\sqrt{89} + 7\sqrt{2225}}{2225} \]