Expand and simplify: \( \begin{array}{lllll}\text { (1) } 3 x(x+3) & \text { (2) } & -3 a\left(3 a^{3}-6 a^{2}+a\right) & \text { (3) } & (x+5)(x+2) \\ \text { (4) }(x-5)(x-2) & \text { (5) } & (x+5)(x-2) & \text { (4) } & (x-5)(x+2) \\ \text { (7) }(3 x-1)(2 x+3) & \text { (8) } & (7 m-2 n)(3 m+4 n) \\ \text { (9) }\left(2 x^{4}-3 y^{2}\right)\left(3 x^{4}+2 y^{2}\right) & \text { (10) }\left(4 x^{4}+3 y^{5}\right)\left(2 x^{4}-4 y^{3}\right)\end{array} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Extra Insights
Let's tackle each expression one by one! (1) For \( 3x(x+3) \), we distribute \( 3x \): \[ 3x \cdot x + 3x \cdot 3 = 3x^2 + 9x. \] (2) For \( -3a(3a^3 - 6a^2 + a) \), distribute \(-3a\): \[ -3a \cdot 3a^3 + (-3a) \cdot (-6a^2) + (-3a) \cdot a = -9a^4 + 18a^3 - 3a^2. \] (3) Expanding \( (x+5)(x+2) \): \[ x \cdot x + x \cdot 2 + 5 \cdot x + 5 \cdot 2 = x^2 + 2x + 5x + 10 = x^2 + 7x + 10. \] (4) Expanding \( (x-5)(x-2) \): \[ x \cdot x + (-5) \cdot x + (-2) \cdot x + (-5)(-2) = x^2 - 2x - 5x + 10 = x^2 - 7x + 10. \] (5) Expanding \( (x+5)(x-2) \): \[ x \cdot x + (-2) \cdot x + 5 \cdot x + 5 \cdot (-2) = x^2 - 2x + 5x - 10 = x^2 + 3x - 10. \] (6) Expanding \( (x-5)(x+2) \): \[ x \cdot x + 2 \cdot x + (-5) \cdot x + (-5) \cdot 2 = x^2 + 2x - 5x - 10 = x^2 - 3x - 10. \] (7) Expanding \( (3x-1)(2x+3) \): \[ 3x \cdot 2x + 3x \cdot 3 + (-1) \cdot 2x + (-1) \cdot 3 = 6x^2 + 9x - 2x - 3 = 6x^2 + 7x - 3. \] (8) Expanding \( (7m-2n)(3m+4n) \): \[ 7m \cdot 3m + 7m \cdot 4n + (-2n) \cdot 3m + (-2n) \cdot 4n = 21m^2 + 28mn - 6mn - 8n^2 = 21m^2 + 22mn - 8n^2. \] (9) Expanding \( (2x^4 - 3y^2)(3x^4 + 2y^2) \): \[ 2x^4 \cdot 3x^4 + 2x^4 \cdot 2y^2 - 3y^2 \cdot 3x^4 - 3y^2 \cdot 2y^2 = 6x^8 + 4x^4y^2 - 9x^4y^2 - 6y^4 = 6x^8 - 5x^4y^2 - 6y^4. \] (10) Expanding \( (4x^4 + 3y^5)(2x^4 - 4y^3) \): \[ 4x^4 \cdot 2x^4 + 4x^4 \cdot (-4y^3) + 3y^5 \cdot 2x^4 + 3y^5 \cdot (-4y^3) = 8x^8 - 16x^4y^3 + 6x^4y^5 - 12y^8 = 8x^8 - 16x^4y^3 + 6x^4y^5 - 12y^8. \] These expansions cover all the expressions provided!