Question
upstudy study bank question image url

Match each equation below with its solution(s) \( \begin{array}{ll}\text { 1. } x^{2}=4 & \text { 2. } x^{2}=-4 \\ \)\begin{tabular}{ll}\text { 3. }\( x^{2}+2=0 \) & \text { 4. }\( x^{2}-2=0 \) \\ \( \begin{array}{ll}\text { 5. } x^{2}=-32 & \text { 6. } x^{2}=32 \\ \text { 7. } x-2=0 & \text { 8. } x+2=0\end{array} \) \\ \hline \( \pm i \sqrt{2} 2 \pm 4 i \sqrt{2} \) & -2 \\ \( \pm 4 \sqrt{2} \pm \sqrt{2} \pm 2 i \) \\ \( \pm 2 \)\end{tabular}\end{array}

Ask by Sherman Hamilton. in the United States
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

| **Equation** | **Solution(s)** | |-------------------------|---------------------------| | \( 1. \, x^{2} = 4 \) | \( \pm 2 \) | | \( 2. \, x^{2} = -4 \) | \( \pm 2i \) | | \( 3. \, x^{2} + 2 = 0 \) | \( \pm i\sqrt{2} \) | | \( 4. \, x^{2} - 2 = 0 \) | \( \pm \sqrt{2} \) | | \( 5. \, x^{2} = -32 \) | \( \pm 4\sqrt{2}\,i \) | | \( 6. \, x^{2} = 32 \) | \( \pm 4\sqrt{2} \) | | \( 7. \, x - 2 = 0 \) | \( 2 \) | | \( 8. \, x + 2 = 0 \) | \( -2 \) |

Solution

Certainly! Let's match each equation with its corresponding solution(s). ### Equations and Their Solutions: 1. **\( x^{2} = 4 \)** - **Solutions:** \( x = \pm 2 \) 2. **\( x^{2} = -4 \)** - **Solutions:** \( x = \pm 2i \) 3. **\( x^{2} + 2 = 0 \)** - **Solutions:** \( x = \pm i\sqrt{2} \) 4. **\( x^{2} - 2 = 0 \)** - **Solutions:** \( x = \pm \sqrt{2} \) 5. **\( x^{2} = -32 \)** - **Solutions:** \( x = \pm 4\sqrt{2}\,i \) 6. **\( x^{2} = 32 \)** - **Solutions:** \( x = \pm 4\sqrt{2} \) 7. **\( x - 2 = 0 \)** - **Solution:** \( x = 2 \) 8. **\( x + 2 = 0 \)** - **Solution:** \( x = -2 \) ### Summary of Matches: | **Equation** | **Solution(s)** | |-------------------------|---------------------------| | \( 1. \, x^{2} = 4 \) | \( \pm 2 \) | | \( 2. \, x^{2} = -4 \) | \( \pm 2i \) | | \( 3. \, x^{2} + 2 = 0 \) | \( \pm i\sqrt{2} \) | | \( 4. \, x^{2} - 2 = 0 \) | \( \pm \sqrt{2} \) | | \( 5. \, x^{2} = -32 \) | \( \pm 4\sqrt{2}\,i \) | | \( 6. \, x^{2} = 32 \) | \( \pm 4\sqrt{2} \) | | \( 7. \, x - 2 = 0 \) | \( 2 \) | | \( 8. \, x + 2 = 0 \) | \( -2 \) | ### Explanation: - **Quadratic Equations (\(x^2 = \text{constant}\)):** - **Positive Constant:** The solutions are real numbers. - **Negative Constant:** The solutions involve imaginary numbers (\(i\)). - **Linear Equations (\(x \pm \text{constant} = 0\)):** - These have straightforward real solutions. Feel free to reach out if you need further clarification on any of these solutions!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Let's match each equation with its corresponding solution(s): 1. \( x^{2}=4 \) : \( \pm 2 \) 2. \( x^{2}=-4 \) : \( \pm 2 i \) 3. \( x^{2}+2=0 \) : \( \pm i \sqrt{2} \) 4. \( x^{2}-2=0 \) : \( \pm \sqrt{2} \) 5. \( x^{2}=-32 \) : \( \pm 4 i \sqrt{2} \) 6. \( x^{2}=32 \) : \( \pm 4 \sqrt{2} \) 7. \( x-2=0 \) : \( 2 \) 8. \( x+2=0 \) : \( -2 \) And there you have it! Each equation now has a perfect pair of solutions.

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy