Question
Match each equation below with its solution(s) \( \begin{array}{ll}\text { 1. } x^{2}=4 & \text { 2. } x^{2}=-4 \\ \)\begin{tabular}{ll}\text { 3. }\( x^{2}+2=0 \) & \text { 4. }\( x^{2}-2=0 \) \\ \( \begin{array}{ll}\text { 5. } x^{2}=-32 & \text { 6. } x^{2}=32 \\ \text { 7. } x-2=0 & \text { 8. } x+2=0\end{array} \) \\ \hline \( \pm i \sqrt{2} 2 \pm 4 i \sqrt{2} \) & -2 \\ \( \pm 4 \sqrt{2} \pm \sqrt{2} \pm 2 i \) \\ \( \pm 2 \)\end{tabular}\end{array}
Ask by Sherman Hamilton. in the United States
Jan 22,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
| **Equation** | **Solution(s)** |
|-------------------------|---------------------------|
| \( 1. \, x^{2} = 4 \) | \( \pm 2 \) |
| \( 2. \, x^{2} = -4 \) | \( \pm 2i \) |
| \( 3. \, x^{2} + 2 = 0 \) | \( \pm i\sqrt{2} \) |
| \( 4. \, x^{2} - 2 = 0 \) | \( \pm \sqrt{2} \) |
| \( 5. \, x^{2} = -32 \) | \( \pm 4\sqrt{2}\,i \) |
| \( 6. \, x^{2} = 32 \) | \( \pm 4\sqrt{2} \) |
| \( 7. \, x - 2 = 0 \) | \( 2 \) |
| \( 8. \, x + 2 = 0 \) | \( -2 \) |
Solution
Certainly! Let's match each equation with its corresponding solution(s).
### Equations and Their Solutions:
1. **\( x^{2} = 4 \)**
- **Solutions:** \( x = \pm 2 \)
2. **\( x^{2} = -4 \)**
- **Solutions:** \( x = \pm 2i \)
3. **\( x^{2} + 2 = 0 \)**
- **Solutions:** \( x = \pm i\sqrt{2} \)
4. **\( x^{2} - 2 = 0 \)**
- **Solutions:** \( x = \pm \sqrt{2} \)
5. **\( x^{2} = -32 \)**
- **Solutions:** \( x = \pm 4\sqrt{2}\,i \)
6. **\( x^{2} = 32 \)**
- **Solutions:** \( x = \pm 4\sqrt{2} \)
7. **\( x - 2 = 0 \)**
- **Solution:** \( x = 2 \)
8. **\( x + 2 = 0 \)**
- **Solution:** \( x = -2 \)
### Summary of Matches:
| **Equation** | **Solution(s)** |
|-------------------------|---------------------------|
| \( 1. \, x^{2} = 4 \) | \( \pm 2 \) |
| \( 2. \, x^{2} = -4 \) | \( \pm 2i \) |
| \( 3. \, x^{2} + 2 = 0 \) | \( \pm i\sqrt{2} \) |
| \( 4. \, x^{2} - 2 = 0 \) | \( \pm \sqrt{2} \) |
| \( 5. \, x^{2} = -32 \) | \( \pm 4\sqrt{2}\,i \) |
| \( 6. \, x^{2} = 32 \) | \( \pm 4\sqrt{2} \) |
| \( 7. \, x - 2 = 0 \) | \( 2 \) |
| \( 8. \, x + 2 = 0 \) | \( -2 \) |
### Explanation:
- **Quadratic Equations (\(x^2 = \text{constant}\)):**
- **Positive Constant:** The solutions are real numbers.
- **Negative Constant:** The solutions involve imaginary numbers (\(i\)).
- **Linear Equations (\(x \pm \text{constant} = 0\)):**
- These have straightforward real solutions.
Feel free to reach out if you need further clarification on any of these solutions!
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Beyond the Answer
Let's match each equation with its corresponding solution(s): 1. \( x^{2}=4 \) : \( \pm 2 \) 2. \( x^{2}=-4 \) : \( \pm 2 i \) 3. \( x^{2}+2=0 \) : \( \pm i \sqrt{2} \) 4. \( x^{2}-2=0 \) : \( \pm \sqrt{2} \) 5. \( x^{2}=-32 \) : \( \pm 4 i \sqrt{2} \) 6. \( x^{2}=32 \) : \( \pm 4 \sqrt{2} \) 7. \( x-2=0 \) : \( 2 \) 8. \( x+2=0 \) : \( -2 \) And there you have it! Each equation now has a perfect pair of solutions.