Question
upstudy study bank question image url

8. Write each number in the form \( \frac{a}{b} \) where \( a \) and \( b \in \mathbb{Z} \) and \( a \) and \( b \) have no common factors. \( \begin{array}{ll}\text { a) } \frac{2}{3} \times \frac{6}{5} & \text { b) } \frac{-15}{8} \times \frac{12}{10} \\ \text { c) }-1 \frac{3}{4} \times \frac{8}{9} & \text { d) } 2 \frac{4}{5} \times \frac{-10}{12} \\ \text { e) } \frac{4}{6} \div \frac{4}{3} & \text { f) } \frac{-6}{25} \div \frac{5}{12} \\ \text { g) } \frac{1}{2}+\frac{1}{3}+\frac{1}{4} & \text { h) } 2 \frac{2}{3}+1 \frac{1}{4}-3 \frac{1}{5} \\ \text { i) } \frac{2}{3} \times \frac{3}{4} \div \frac{5}{4}+\frac{4}{5} \div \frac{1}{2} & \text { j) } \frac{2}{3} \div \frac{3}{4} \div \frac{5}{4}+\frac{4}{5} \div 2 \\ \text { k) } \frac{2}{3} \div\left(\frac{3}{4} \div \frac{5}{4}\right)-\frac{4}{3} \div \frac{6}{2} & \text { l) } \frac{3}{2} \div \frac{3}{4} \times\left(\frac{5}{4}-\frac{4}{5}\right) \div \frac{1}{2} \\ \text { Use your calculator to find an approximate value for } \sqrt{7} \\ \text { Is } \sqrt{7} \text { a Rational or an Irrational Number? } \\ \begin{array}{ll}\text { Determine the two consecutive Integers that each Irrational } \\ \text { Number lies between: } & \text { l. } \\ \text { a) } \sqrt{50} & \text { if } \\ \text { b) } \sqrt[3]{45} & \end{array}\end{array} \begin{array}{l}\text { c) } 2 \sqrt{6}\end{array} \)

Ask by Chan Harrington. in South Africa
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

a) \( \frac{4}{5} \) b) \( \frac{-9}{4} \) c) \( \frac{-14}{9} \) d) \( \frac{-7}{3} \) e) \( \frac{1}{2} \) f) \( \frac{-72}{125} \) g) \( \frac{13}{12} \) h) \( \frac{43}{60} \) i) \( \frac{2}{5} \) j) \( \frac{2}{5} \) k) \( \frac{2}{5} \) l) \( \frac{3}{2} \div \frac{3}{4} \times \left( \frac{5}{4} - \frac{4}{5} \right) \div \frac{1}{2} = \frac{3}{2} \times \frac{4}{3} \times \left( \frac{25}{20} - \frac{16}{20} \right) \times 2 = 2 \times \frac{9}{20} \times 2 = \frac{36}{20} = \frac{9}{5} \) Use your calculator to find an approximate value for \( \sqrt{7} \): \( \sqrt{7} \approx 2.6458 \) Is \( \sqrt{7} \) a Rational or an Irrational Number? \( \sqrt{7} \) is an irrational number. Determine the two consecutive Integers that each Irrational Number lies between: a) \( \sqrt{50} \) \( \sqrt{49} = 7 \) and \( \sqrt{64} = 8 \), so \( \sqrt{50} \) lies between 7 and 8. b) \( \sqrt[3]{45} \) \( \sqrt[3]{64} = 4 \) and \( \sqrt[3]{125} = 5 \), so \( \sqrt[3]{45} \) lies between 3 and 4. c) \( 2 \sqrt{6} \) \( \sqrt{4} = 2 \) and \( \sqrt{9} = 3 \), so \( 2 \sqrt{6} \) lies between 4 and 6.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Bonus Knowledge

To solve these problems, let's go through them step by step! a) \( \frac{2}{3} \times \frac{6}{5} = \frac{12}{15} = \frac{4}{5} \) (after simplifying) b) \( \frac{-15}{8} \times \frac{12}{10} = \frac{-180}{80} = \frac{-9}{4} \) (after simplifying) c) \( -1 \frac{3}{4} \times \frac{8}{9} = -\frac{7}{4} \times \frac{8}{9} = -\frac{56}{36} = -\frac{14}{9} \) (after simplifying) d) \( 2 \frac{4}{5} \times \frac{-10}{12} = \frac{14}{5} \times \frac{-5}{6} = -\frac{70}{30} = -\frac{7}{3} \) (after simplifying) e) \( \frac{4}{6} \div \frac{4}{3} = \frac{4}{6} \times \frac{3}{4} = \frac{3}{6} = \frac{1}{2} \) (after simplifying) f) \( \frac{-6}{25} \div \frac{5}{12} = \frac{-6}{25} \times \frac{12}{5} = \frac{-72}{125} \) (after simplifying) g) \( \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{6}{12} + \frac{4}{12} + \frac{3}{12} = \frac{13}{12} \) (no common factors) h) \( 2 \frac{2}{3} + 1 \frac{1}{4} - 3 \frac{1}{5} = \frac{8}{3} + \frac{5}{4} - \frac{16}{5} = \text{(common denominator)} = \frac{80 + 60 - 48}{60} = \frac{92}{60} = \frac{23}{15} \) (after simplifying) i) \( \frac{2}{3} \times \frac{3}{4} \div \frac{5}{4} + \frac{4}{5} \div \frac{1}{2} = \frac{1}{2} \div \frac{5}{4} + \frac{8}{5} = \frac{2}{5} + \frac{8}{5} = 2 \) j) \( \frac{2}{3} \div \frac{3}{4} \div \frac{5}{4} + \frac{4}{5} \div 2 = \frac{8}{15} + \frac{4}{10} = \frac{8}{15} + \frac{6}{15} = \frac{14}{15} \) k) \( \frac{2}{3} \div \left(\frac{3}{4} \div \frac{5}{4}\right) - \frac{4}{3} \div \frac{6}{2} = \frac{8}{9} - \frac{8}{9} = 0 \) l) \( \frac{3}{2} \div \frac{3}{4} \times \left(\frac{5}{4} - \frac{4}{5}\right) \div \frac{1}{2} = 2 \times \left(\frac{25 - 16}{20}\right) \times 2 = 2 \times \frac{9}{20} = \frac{9}{10} \) The square root of 7, approximately \( \sqrt{7} \approx 2.6457513110645906 \), is not a rational number. It lies between the integers 2 and 3. For the other roots: a) \( \sqrt{50} \) lies between 7 (since \( 7^2 = 49 \)) and 8 (since \( 8^2 = 64 \)). b) \( \sqrt[3]{45} \) lies between 3 (since \( 3^3 = 27 \)) and 4 (since \( 4^3 = 64 \)). c) \( 2 \sqrt{6} \) lies between 4 (since \( 2 \cdot 2 = 4 \)) and 6 (since \(

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy