8. Write each number in the form \( \frac{a}{b} \) where \( a \) and \( b \in \mathbb{Z} \) and \( a \) and \( b \) have no common factors. \( \begin{array}{ll}\text { a) } \frac{2}{3} \times \frac{6}{5} & \text { b) } \frac{-15}{8} \times \frac{12}{10} \\ \text { c) }-1 \frac{3}{4} \times \frac{8}{9} & \text { d) } 2 \frac{4}{5} \times \frac{-10}{12} \\ \text { e) } \frac{4}{6} \div \frac{4}{3} & \text { f) } \frac{-6}{25} \div \frac{5}{12} \\ \text { g) } \frac{1}{2}+\frac{1}{3}+\frac{1}{4} & \text { h) } 2 \frac{2}{3}+1 \frac{1}{4}-3 \frac{1}{5} \\ \text { i) } \frac{2}{3} \times \frac{3}{4} \div \frac{5}{4}+\frac{4}{5} \div \frac{1}{2} & \text { j) } \frac{2}{3} \div \frac{3}{4} \div \frac{5}{4}+\frac{4}{5} \div 2 \\ \text { k) } \frac{2}{3} \div\left(\frac{3}{4} \div \frac{5}{4}\right)-\frac{4}{3} \div \frac{6}{2} & \text { l) } \frac{3}{2} \div \frac{3}{4} \times\left(\frac{5}{4}-\frac{4}{5}\right) \div \frac{1}{2} \\ \text { Use your calculator to find an approximate value for } \sqrt{7} \\ \text { Is } \sqrt{7} \text { a Rational or an Irrational Number? } \\ \begin{array}{ll}\text { Determine the two consecutive Integers that each Irrational } \\ \text { Number lies between: } & \text { l. } \\ \text { a) } \sqrt{50} & \text { if } \\ \text { b) } \sqrt[3]{45} & \end{array}\end{array} \begin{array}{l}\text { c) } 2 \sqrt{6}\end{array} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To solve these problems, let's go through them step by step! a) \( \frac{2}{3} \times \frac{6}{5} = \frac{12}{15} = \frac{4}{5} \) (after simplifying) b) \( \frac{-15}{8} \times \frac{12}{10} = \frac{-180}{80} = \frac{-9}{4} \) (after simplifying) c) \( -1 \frac{3}{4} \times \frac{8}{9} = -\frac{7}{4} \times \frac{8}{9} = -\frac{56}{36} = -\frac{14}{9} \) (after simplifying) d) \( 2 \frac{4}{5} \times \frac{-10}{12} = \frac{14}{5} \times \frac{-5}{6} = -\frac{70}{30} = -\frac{7}{3} \) (after simplifying) e) \( \frac{4}{6} \div \frac{4}{3} = \frac{4}{6} \times \frac{3}{4} = \frac{3}{6} = \frac{1}{2} \) (after simplifying) f) \( \frac{-6}{25} \div \frac{5}{12} = \frac{-6}{25} \times \frac{12}{5} = \frac{-72}{125} \) (after simplifying) g) \( \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{6}{12} + \frac{4}{12} + \frac{3}{12} = \frac{13}{12} \) (no common factors) h) \( 2 \frac{2}{3} + 1 \frac{1}{4} - 3 \frac{1}{5} = \frac{8}{3} + \frac{5}{4} - \frac{16}{5} = \text{(common denominator)} = \frac{80 + 60 - 48}{60} = \frac{92}{60} = \frac{23}{15} \) (after simplifying) i) \( \frac{2}{3} \times \frac{3}{4} \div \frac{5}{4} + \frac{4}{5} \div \frac{1}{2} = \frac{1}{2} \div \frac{5}{4} + \frac{8}{5} = \frac{2}{5} + \frac{8}{5} = 2 \) j) \( \frac{2}{3} \div \frac{3}{4} \div \frac{5}{4} + \frac{4}{5} \div 2 = \frac{8}{15} + \frac{4}{10} = \frac{8}{15} + \frac{6}{15} = \frac{14}{15} \) k) \( \frac{2}{3} \div \left(\frac{3}{4} \div \frac{5}{4}\right) - \frac{4}{3} \div \frac{6}{2} = \frac{8}{9} - \frac{8}{9} = 0 \) l) \( \frac{3}{2} \div \frac{3}{4} \times \left(\frac{5}{4} - \frac{4}{5}\right) \div \frac{1}{2} = 2 \times \left(\frac{25 - 16}{20}\right) \times 2 = 2 \times \frac{9}{20} = \frac{9}{10} \) The square root of 7, approximately \( \sqrt{7} \approx 2.6457513110645906 \), is not a rational number. It lies between the integers 2 and 3. For the other roots: a) \( \sqrt{50} \) lies between 7 (since \( 7^2 = 49 \)) and 8 (since \( 8^2 = 64 \)). b) \( \sqrt[3]{45} \) lies between 3 (since \( 3^3 = 27 \)) and 4 (since \( 4^3 = 64 \)). c) \( 2 \sqrt{6} \) lies between 4 (since \( 2 \cdot 2 = 4 \)) and 6 (since \(