Question
upstudy study bank question image url

Use the information given about the angle \( \theta, \cot \theta=-8, \sec \theta<0,0 \leq \theta<2 \pi \), to find the exact values of the following. \( \begin{array}{l}\text { (a) } \sin (2 \theta), \text { (b) } \cos (2 \theta), \text { (c) } \sin \frac{\theta}{2} \text {, and (d) } \cos \frac{\theta}{2} \\ \text { (a) } \sin (2 \theta)=\square \text { (Type an exact answer, using radicals as needed.) }\end{array} \)

Ask by Wood Bowers. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( \sin(2\theta) = -\frac{16}{65} \)

Solution

Given: - \( \cot \theta = -8 \) - \( \sec \theta < 0 \) - \( 0 \leq \theta < 2\pi \) We need to find \( \sin(2\theta) \). **Step 1: Determine \( \sin \theta \) and \( \cos \theta \)** From \( \cot \theta = \frac{\cos \theta}{\sin \theta} = -8 \), we can express: \[ \cos \theta = -8 \sin \theta \] Since \( \sec \theta < 0 \), it implies \( \cos \theta < 0 \). Using the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substitute \( \cos \theta = -8 \sin \theta \): \[ \sin^2 \theta + (-8 \sin \theta)^2 = 1 \] \[ \sin^2 \theta + 64 \sin^2 \theta = 1 \] \[ 65 \sin^2 \theta = 1 \] \[ \sin \theta = \frac{1}{\sqrt{65}} \] \[ \cos \theta = -8 \cdot \frac{1}{\sqrt{65}} = -\frac{8}{\sqrt{65}} \] **Step 2: Compute \( \sin(2\theta) \)** Using the double-angle identity: \[ \sin(2\theta) = 2 \sin \theta \cos \theta \] \[ \sin(2\theta) = 2 \cdot \frac{1}{\sqrt{65}} \cdot \left(-\frac{8}{\sqrt{65}}\right) \] \[ \sin(2\theta) = \frac{-16}{65} \] **Answer:** \[ \sin(2\theta) = -\frac{16}{65} \] Answer: Problem a Answer \(\sin(2\theta) = -\dfrac{16}{65}\)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To solve the problem, we start by using the information given about \( \cot \theta \) and \( \sec \theta \). Since \( \cot \theta = -8 \), we have: \[ \cot \theta = \frac{\cos \theta}{\sin \theta} = -8 \] This indicates that \( \cos \theta \) and \( \sin \theta \) have different signs. Additionally, \( \sec \theta < 0 \) tells us that \( \cos \theta < 0 \). Therefore, \( \sin \theta > 0 \), which places \( \theta \) in the second quadrant where sine is positive and cosine is negative. We can express \( \sin \theta \) and \( \cos \theta \) in terms of a right triangle where \( \cos \theta = -8k \) and \( \sin \theta = k \). Using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ (k)^2 + (-8k)^2 = 1 \] \[ k^2 + 64k^2 = 1 \] \[ 65k^2 = 1 \implies k^2 = \frac{1}{65} \implies k = \frac{1}{\sqrt{65}} \] This gives: \[ \sin \theta = \frac{1}{\sqrt{65}}, \quad \cos \theta = -\frac{8}{\sqrt{65}} \] Now, we can find \( \sin 2\theta \) and \( \cos 2\theta \): \[ \sin 2\theta = 2 \sin \theta \cos \theta = 2 \left(\frac{1}{\sqrt{65}}\right) \left(-\frac{8}{\sqrt{65}}\right) = -\frac{16}{65} \] Thus, \[ \text{(a) } \sin (2 \theta) = -\frac{16}{65} \] Now, for \( \cos 2\theta \): \[ \cos 2\theta = \cos^2 \theta - \sin^2 \theta = \left(-\frac{8}{\sqrt{65}}\right)^2 - \left(\frac{1}{\sqrt{65}}\right)^2 = \frac{64}{65} - \frac{1}{65} = \frac{63}{65} \] So, \[ \text{(b) } \cos (2 \theta) = \frac{63}{65} \] Next, we find \( \sin \frac{\theta}{2} \) and \( \cos \frac{\theta}{2} \) using the half-angle formulas: \[ \sin \frac{\theta}{2} = \sqrt{\frac{1 - \cos \theta}{2}} = \sqrt{\frac{1 + \frac{8}{\sqrt{65}}}{2}} = \sqrt{\frac{\frac{\sqrt{65} + 8}{\sqrt{65}}}{2}} = \frac{\sqrt{\sqrt{65} + 8}}{\sqrt{130}} \] And for \( \cos \frac{\theta}{2} \): \[ \cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}} = \sqrt{\frac{1 - \frac{8}{\sqrt{65}}}{2}} = \sqrt{\frac{\frac{\sqrt{65} - 8}{\sqrt{65}}}{2}} = \frac{\sqrt{\sqrt{65} - 8}}{\sqrt{130}} \] Thus, the final answers are: (a) \( \sin (2 \theta) = -\frac{16}{65} \) (b) \( \cos (2 \theta) = \frac{63}{65} \) (c) \( \sin \frac{\theta}{2} = \frac{\sqrt{\sqrt{65} + 8}}{\sqrt{130}} \) (d) \( \cos \frac{\theta}{2} = \frac{\sqrt{\sqrt{65} - 8}}{\sqrt{130}} \)

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy