Answer
Solutions for the trigonometric equations are as follows:
- **Problem 25:** \( x = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2} \)
- **Problem 26:** \( x = 0, \pi \)
- **Problem 27:** \( x = 0, \frac{\pi}{6}, \frac{5\pi}{6}, \pi, \frac{7\pi}{6}, \frac{11\pi}{6} \)
- **Problem 28:** \( x = \frac{\pi}{2}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{3\pi}{2} \)
Solution
Certainly! Let's solve each of the trigonometric equations provided within the interval \([0, 2\pi)\). We'll tackle problems **25** through **28** one by one.
---
### **Problem 25:** \( \cos^{3}x = \cos x \)
**Step 1:** Rewrite the equation and factor it.
\[
\cos^{3}x - \cos x = 0 \quad \Rightarrow \quad \cos x (\cos^{2}x - 1) = 0
\]
**Step 2:** Set each factor equal to zero.
1. \( \cos x = 0 \)
2. \( \cos^{2}x - 1 = 0 \) \(\Rightarrow\) \( \cos x = \pm 1 \)
**Step 3:** Find all solutions in \([0, 2\pi)\).
- \( \cos x = 0 \) at:
- \( x = \frac{\pi}{2} \)
- \( x = \frac{3\pi}{2} \)
- \( \cos x = 1 \) at:
- \( x = 0 \) (or \( 2\pi \), but \( 2\pi \) is excluded)
- \( \cos x = -1 \) at:
- \( x = \pi \)
****Solutions:**
\[
x = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}
\]
---
### **Problem 26:** \( \sec^{2}x - 1 = 0 \)
**Step 1:** Recall the identity \( \sec^{2}x = 1 + \tan^{2}x \), but directly solve the equation:
\[
\sec^{2}x - 1 = 0 \quad \Rightarrow \quad \sec^{2}x = 1 \quad \Rightarrow \quad \tan^{2}x = 0 \quad \Rightarrow \quad \tan x = 0
\]
**Step 2:** Find all solutions where \( \tan x = 0 \) in \([0, 2\pi)\).
- \( \tan x = 0 \) at:
- \( x = 0 \)
- \( x = \pi \)
****Solutions:**
\[
x = 0, \pi
\]
---
### **Problem 27:** \( 3 \tan^{3}x = \tan x \)
**Step 1:** Rearrange and factor the equation.
\[
3 \tan^{3}x - \tan x = 0 \quad \Rightarrow \quad \tan x (3 \tan^{2}x - 1) = 0
\]
**Step 2:** Set each factor equal to zero.
1. \( \tan x = 0 \)
2. \( 3 \tan^{2}x - 1 = 0 \) \(\Rightarrow\) \( \tan^{2}x = \frac{1}{3} \) \(\Rightarrow\) \( \tan x = \pm \frac{1}{\sqrt{3}} \)
**Step 3:** Find all solutions in \([0, 2\pi)\).
- \( \tan x = 0 \) at:
- \( x = 0 \)
- \( x = \pi \)
- \( \tan x = \frac{1}{\sqrt{3}} \) corresponds to:
- \( x = \frac{\pi}{6} \)
- \( x = \frac{7\pi}{6} \)
- \( \tan x = -\frac{1}{\sqrt{3}} \) corresponds to:
- \( x = \frac{5\pi}{6} \)
- \( x = \frac{11\pi}{6} \)
****Solutions:**
\[
x = 0, \frac{\pi}{6}, \frac{5\pi}{6}, \pi, \frac{7\pi}{6}, \frac{11\pi}{6}
\]
---
### **Problem 28:** \( 2 \sin^{2}x = 2 + \cos x \)
**Step 1:** Use the Pythagorean identity \( \sin^{2}x = 1 - \cos^{2}x \) to rewrite the equation.
\[
2(1 - \cos^{2}x) = 2 + \cos x \quad \Rightarrow \quad 2 - 2\cos^{2}x = 2 + \cos x
\]
**Step 2:** Simplify the equation.
\[
-2\cos^{2}x = \cos x \quad \Rightarrow \quad -2\cos^{2}x - \cos x = 0 \quad \Rightarrow \quad \cos x ( -2\cos x - 1 ) = 0
\]
**Step 3:** Set each factor equal to zero.
1. \( \cos x = 0 \)
2. \( -2\cos x - 1 = 0 \) \(\Rightarrow\) \( \cos x = -\frac{1}{2} \)
**Step 4:** Find all solutions in \([0, 2\pi)\).
- \( \cos x = 0 \) at:
- \( x = \frac{\pi}{2} \)
- \( x = \frac{3\pi}{2} \)
- \( \cos x = -\frac{1}{2} \) at:
- \( x = \frac{2\pi}{3} \)
- \( x = \frac{4\pi}{3} \)
****Solutions:**
\[
x = \frac{\pi}{2}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{3\pi}{2}
\]
---
### **Summary of All Solutions:**
- **Problem 25:** \( x = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2} \)
- **Problem 26:** \( x = 0, \pi \)
- **Problem 27:** \( x = 0, \frac{\pi}{6}, \frac{5\pi}{6}, \pi, \frac{7\pi}{6}, \frac{11\pi}{6} \)
- **Problem 28:** \( x = \frac{\pi}{2}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{3\pi}{2} \)
Feel free to reach out if you need further clarification on any of these problems!
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution