Answer
Each bundle yields the following units:
- High-grade grain: 9.25 units
- Medium-grade grain: 4.25 units
- Low-grade grain: 2.75 units
Solution
Certainly! Let's solve the given system of equations using matrix methods. The problem involves finding the unit values of high-grade (\(x\)), medium-grade (\(y\)), and low-grade (\(z\)) grain bundles based on the provided equations.
### **Given System of Equations:**
1. \(3x + 2y + z = 39\)
2. \(2x + 3y + z = 34\)
3. \(x + 2y + 3z = 26\)
### **Step 1: Represent the System as an Augmented Matrix**
\[
\begin{bmatrix}
3 & 2 & 1 & | & 39 \\
2 & 3 & 1 & | & 34 \\
1 & 2 & 3 & | & 26 \\
\end{bmatrix}
\]
### **Step 2: Perform Row Operations to Achieve Row-Echelon Form**
**a. Eliminate \(x\) from the second and third rows:**
- **R2' = R2 - (2/3)R1**
\[
R2' = \begin{bmatrix} 2 & 3 & 1 & | & 34 \end{bmatrix} - \frac{2}{3} \begin{bmatrix} 3 & 2 & 1 & | & 39 \end{bmatrix} = \begin{bmatrix} 0 & \frac{5}{3} & \frac{1}{3} & | & 34 - 26 \end{bmatrix} = \begin{bmatrix} 0 & \frac{5}{3} & \frac{1}{3} & | & 8 \end{bmatrix}
\]
- **R3' = R3 - (1/3)R1**
\[
R3' = \begin{bmatrix} 1 & 2 & 3 & | & 26 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 3 & 2 & 1 & | & 39 \end{bmatrix} = \begin{bmatrix} 0 & \frac{4}{3} & \frac{8}{3} & | & 26 - 13 \end{bmatrix} = \begin{bmatrix} 0 & \frac{4}{3} & \frac{8}{3} & | & 13 \end{bmatrix}
\]
**b. Update the Matrix:**
\[
\begin{bmatrix}
3 & 2 & 1 & | & 39 \\
0 & \frac{5}{3} & \frac{1}{3} & | & 8 \\
0 & \frac{4}{3} & \frac{8}{3} & | & 13 \\
\end{bmatrix}
\]
**c. Eliminate \(y\) from the third row:**
- Multiply R2' by 4 and R3' by 5 to make the coefficients of \(y\) the same:
\[
R2'' = 4 \times R2' = \begin{bmatrix} 0 & \frac{20}{3} & \frac{4}{3} & | & 32 \end{bmatrix}
\]
\[
R3'' = 5 \times R3' = \begin{bmatrix} 0 & \frac{20}{3} & \frac{40}{3} & | & 65 \end{bmatrix}
\]
- **R3''' = R3'' - R2''**
\[
R3''' = \begin{bmatrix} 0 & 20/3 & 40/3 & | & 65 \end{bmatrix} - \begin{bmatrix} 0 & 20/3 & 4/3 & | & 32 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 36/3 & | & 33 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 12 & | & 33 \end{bmatrix}
\]
**d. Update the Matrix:**
\[
\begin{bmatrix}
3 & 2 & 1 & | & 39 \\
0 & \frac{5}{3} & \frac{1}{3} & | & 8 \\
0 & 0 & 12 & | & 33 \\
\end{bmatrix}
\]
### **Step 3: Back Substitution**
**a. From the third row:**
\[
12z = 33 \implies z = \frac{33}{12} = \frac{11}{4} = 2.75
\]
**b. Substitute \(z\) into the second row:**
\[
\frac{5}{3}y + \frac{1}{3} \times \frac{11}{4} = 8 \\
\frac{5}{3}y + \frac{11}{12} = 8 \\
\frac{5}{3}y = 8 - \frac{11}{12} \\
\frac{5}{3}y = \frac{96}{12} - \frac{11}{12} = \frac{85}{12} \\
y = \frac{85}{12} \times \frac{3}{5} = \frac{85}{20} = \frac{17}{4} = 4.25
\]
**c. Substitute \(y\) and \(z\) into the first row:**
\[
3x + 2 \times \frac{17}{4} + \frac{11}{4} = 39 \\
3x + \frac{34}{4} + \frac{11}{4} = 39 \\
3x + \frac{45}{4} = 39 \\
3x = 39 - \frac{45}{4} = \frac{156}{4} - \frac{45}{4} = \frac{111}{4} \\
x = \frac{111}{12} = \frac{37}{4} = 9.25
\]
### **Final Solution:**
\[
\begin{cases}
x = \frac{37}{4} \text{ units} \\
y = \frac{17}{4} \text{ units} \\
z = \frac{11}{4} \text{ units} \\
\end{cases}
\]
Or in mixed numbers:
\[
\begin{cases}
x = 9 \frac{1}{4} \text{ units} \\
y = 4 \frac{1}{4} \text{ units} \\
z = 2 \frac{3}{4} \text{ units} \\
\end{cases}
\]
### **Verification:**
Let's verify by substituting the values back into the original equations:
1. \(3(9.25) + 2(4.25) + 2.75 = 27.75 + 8.5 + 2.75 = 39\) ✔️
2. \(2(9.25) + 3(4.25) + 2.75 = 18.5 + 12.75 + 2.75 = 34\) ✔️
3. \(9.25 + 2(4.25) + 3(2.75) = 9.25 + 8.5 + 8.25 = 26\) ✔️
All equations are satisfied.
**Therefore, the unit values are:**
- **High-grade grain bundle:** \(\frac{37}{4}\) units (9¼ units)
- **Medium-grade grain bundle:** \(\frac{17}{4}\) units (4¼ units)
- **Low-grade grain bundle:** \(\frac{11}{4}\) units (2¾ units)
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution