Question
\( p^{x-y} \times p^{x+y} \times p^{y+z} \times p^{y-z} \times p^{z+x} \times p^{2-x}=1 \) यदि \( x=1, y=2 \) र \( z=-1 \) भए तलका पदहरूको मान निकाल्न \( \begin{array}{llll}\text { (क) } x^{3} & \text { (ख) } y^{x} & \text { ग) } z^{(x y)} & \text { (घ) }(x y) \\ \text { (ङ) } 3^{x} \times 2^{y} & \text { (च) }(x y z)^{-1} & \text { (छ) } 3 y^{x} z^{2} & \end{array} \)
Ask by Ellis Cruz. in Nepal
Oct 23,2024
Real Tutor Solution
Tutor-Verified Answer
Answer
(क) \( x^{3} = 1 \)
(ख) \( y^{x} = 2 \)
(ग) \( z^{(x y)} = 1 \)
(घ) \( (x y) = 2 \)
(ङ) \( 3^{x} \times 2^{y} = 12 \)
(च) \( (x y z)^{-1} = -\frac{1}{2} \)
(छ) \( 3 y^{x} z^{2} = 6 \)
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Unlock
Reviewed and approved by the UpStudy tutoring team
Like