Question
upstudy study bank question image url

6. \( f^{\prime}(x)=e^{x^{2}+3 x-5} \)

Ask by Ramirez Davey. in Puerto Rico
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La función \( f(x) \) es \( \frac{1}{2x+3} \cdot e^{x^{2}+3x-5} + C \), donde \( C \) es una constante.

Solution

Para encontrar la función \( f(x) \) a partir de su derivada \( f^{\prime}(x) \), necesitamos integrar la derivada. Dada la derivada \( f^{\prime}(x) = e^{x^{2}+3x-5} \), podemos integrarla para encontrar la función \( f(x) \). La integral de \( e^{x^{2}+3x-5} \) con respecto a \( x \) se puede calcular de la siguiente manera: \[ f(x) = \int e^{x^{2}+3x-5} \, dx \] Para integrar esta función, podemos utilizar la sustitución \( u = x^{2}+3x-5 \), lo que nos da \( du = (2x+3) \, dx \). Sustituyendo \( u \) y \( du \) en la integral, obtenemos: \[ f(x) = \int e^{u} \, \frac{1}{2x+3} \, du \] Ahora, podemos integrar \( e^{u} \) con respecto a \( u \), lo que nos da: \[ f(x) = \frac{1}{2x+3} \cdot e^{u} + C \] Sustituyendo nuevamente \( u = x^{2}+3x-5 \), obtenemos: \[ f(x) = \frac{1}{2x+3} \cdot e^{x^{2}+3x-5} + C \] Donde \( C \) es la constante de integración. Por lo tanto, la función \( f(x) \) es: \[ f(x) = \frac{1}{2x+3} \cdot e^{x^{2}+3x-5} + C \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To solve for \( f(x) \), you would integrate \( f^{\prime}(x) \). The expression you have, \( e^{x^{2}+3x-5} \), can be tackled using substitution, although it may not yield a simple elementary form. You could let \( u = x^2 + 3x - 5 \) and then \( du = (2x + 3)dx \). This substitution can help simplify the integration process. Once you integrate, don’t forget to add the constant of integration, which is crucial to finding the general solution for \( f(x) \). This aspect is often overlooked, but it’s like forgetting to add sprinkles to a cupcake—it’s just not complete without it!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy