Question
upstudy study bank question image url

3) \( (4 \sqrt{3}-\sqrt{75}+4) \cdot 3 \sqrt{3} \) 4) \( (\sqrt{600}+\sqrt{6}-\sqrt{24}) \cdot \sqrt{6} \)

Ask by Potter Collins. in Ukraine
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**3) \( (4 \sqrt{3} - \sqrt{75} + 4) \cdot 3 \sqrt{3} = -9 + 12 \sqrt{3} \)** **4) \( (\sqrt{600} + \sqrt{6} - \sqrt{24}) \cdot \sqrt{6} = 54 \)**

Solution

**3) \( (4 \sqrt{3} - \sqrt{75} + 4) \cdot 3 \sqrt{3} \)** **Решение:** 1. Упростим выражение под корнем: \[ \sqrt{75} = \sqrt{25 \cdot 3} = 5 \sqrt{3} \] 2. Подставим обратно в выражение: \[ 4 \sqrt{3} - \sqrt{75} + 4 = 4 \sqrt{3} - 5 \sqrt{3} + 4 = (-1) \sqrt{3} + 4 \] 3. Умножим полученное выражение на \( 3 \sqrt{3} \): \[ (- \sqrt{3} + 4) \cdot 3 \sqrt{3} = -\sqrt{3} \cdot 3 \sqrt{3} + 4 \cdot 3 \sqrt{3} = -3 (\sqrt{3})^2 + 12 \sqrt{3} \] 4. Вычислим \((\sqrt{3})^2 = 3\): \[ -3 \cdot 3 + 12 \sqrt{3} = -9 + 12 \sqrt{3} \] **Ответ:** \( -9 + 12 \sqrt{3} \) --- **4) \( (\sqrt{600} + \sqrt{6} - \sqrt{24}) \cdot \sqrt{6} \)** **Решение:** 1. Упростим выражения под корнями: \[ \sqrt{600} = \sqrt{100 \cdot 6} = 10 \sqrt{6} \] \[ \sqrt{24} = \sqrt{4 \cdot 6} = 2 \sqrt{6} \] 2. Подставим обратно в выражение: \[ \sqrt{600} + \sqrt{6} - \sqrt{24} = 10 \sqrt{6} + \sqrt{6} - 2 \sqrt{6} = (10 + 1 - 2) \sqrt{6} = 9 \sqrt{6} \] 3. Умножим на \( \sqrt{6} \): \[ 9 \sqrt{6} \cdot \sqrt{6} = 9 \cdot 6 = 54 \] **Ответ:** \( 54 \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To understand the structure of the expressions given, let’s dig a little deeper into the world of radicals and how they relate to algebra. Radicals, or roots, have a rich history rooted in ancient mathematics, particularly with the Babylonians who used them to solve practical problems involving area and construction. Their methods laid the groundwork for modern algebra! Moving to real-world applications, working with square roots is totally practical! For instance, when determining the dimensions of a garden, using square roots simplifies the calculations for areas and perimeter. It’s not just about finding the lengths but also ensuring that your garden isn't uneven, which any green thumb would tell you makes a huge difference in aesthetics!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy