Nom : Prénom : Classe : Evaluation N7: Fonction logarithme décimal Question N1: Écrire les expression suivantes en fonction'de \( \log (a) \). 1. \( \log \left(a^{2} \times a^{3}\right) \) 2. \( \log \left(\frac{a^{3}}{a^{3}}\right)= \) 3. \( \log \left(\frac{1}{a^{3}}\right)= \) 4. \( \log \left(\frac{2^{2}}{a^{2}}\right)= \) Question N2: Exprimer en fonction de \( \log (5) \) et \( \log (3) \) les nombres suivants : 1. \( \log (5 \times 9) \) 2. \( \log \left(\frac{5}{9}\right) \) 3. \( \log \left(5^{3}\right) \) 4. \( \log \left(3^{5}\right) \) Question N3: Simplifier les expressions suivantes : \[ \begin{array}{l} A=\log \left(10^{5}\right)+\log \left(\frac{1}{3}\right) \\ B=\log (2+\sqrt{3})+\log (2-\sqrt{3}) \end{array} \] \[ C=3 \log (2)-2 \log (4) \]
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
Nom : Prénom : Classe : **Evaluation N7: Fonction logarithme décimal** **Question N1:** 1. \( \log \left(a^{2} \times a^{3}\right) = \log \left(a^{5}\right) = 5 \log (a) \) 2. \( \log \left(\frac{a^{3}}{a^{3}}\right) = \log (1) = 0 \) 3. \( \log \left(\frac{1}{a^{3}}\right) = \log (1) - \log \left(a^{3}\right) = 0 - 3 \log (a) = -3 \log (a) \) 4. \( \log \left(\frac{2^{2}}{a^{2}}\right) = \log (2^{2}) - \log \left(a^{2}\right) = 2 \log (2) - 2 \log (a) = 2(\log (2) - \log (a)) \) **Question N2:** 1. \( \log (5 \times 9) = \log (5) + \log (9) = \log (5) + 2 \log (3) \) 2. \( \log \left(\frac{5}{9}\right) = \log (5) - \log (9) = \log (5) - 2 \log (3) \) 3. \( \log \left(5^{3}\right) = 3 \log (5) \) 4. \( \log \left(3^{5}\right) = 5 \log (3) \) **Question N3:** \[ A = \log \left(10^{5}\right) + \log \left(\frac{1}{3}\right) = 5 + \log \left(\frac{1}{3}\right) = 5 - \log (3) \] \[ B = \log (2+\sqrt{3}) + \log (2-\sqrt{3}) = \log \left((2+\sqrt{3})(2-\sqrt{3})\right) = \log (4 - 3) = \log (1) = 0 \] \[ C = 3 \log (2) - 2 \log (4) = 3 \log (2) - 2 \cdot 2 \log (2) = 3 \log (2) - 4 \log (2) = -\log (2) \]