Question
upstudy study bank question image url

Nom : Prénom : Classe : Evaluation N7: Fonction logarithme décimal Question N1: Écrire les expression suivantes en fonction'de \( \log (a) \). 1. \( \log \left(a^{2} \times a^{3}\right) \) 2. \( \log \left(\frac{a^{3}}{a^{3}}\right)= \) 3. \( \log \left(\frac{1}{a^{3}}\right)= \) 4. \( \log \left(\frac{2^{2}}{a^{2}}\right)= \) Question N2: Exprimer en fonction de \( \log (5) \) et \( \log (3) \) les nombres suivants : 1. \( \log (5 \times 9) \) 2. \( \log \left(\frac{5}{9}\right) \) 3. \( \log \left(5^{3}\right) \) 4. \( \log \left(3^{5}\right) \) Question N3: Simplifier les expressions suivantes : \[ \begin{array}{l} A=\log \left(10^{5}\right)+\log \left(\frac{1}{3}\right) \\ B=\log (2+\sqrt{3})+\log (2-\sqrt{3}) \end{array} \] \[ C=3 \log (2)-2 \log (4) \]

Ask by Hill Ruiz. in France
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**Nom :** **Prénom :** **Classe :** --- ### **Évaluation N7 : Fonction logarithme décimal** --- #### **Question N1 :** **Écrire les expressions suivantes en fonction de \( \log(a) \).** 1. \( \log(a^{2} \times a^{3}) = 5 \log(a) \) 2. \( \log\left(\frac{a^{3}}{a^{3}}\right) = 0 \) 3. \( \log\left(\frac{1}{a^{3}}\right) = -3 \log(a) \) 4. \( \log\left(\frac{2^{2}}{a^{2}}\right) = \log(4) - 2 \log(a) \) --- #### **Question N2 :** **Exprimer en fonction de \( \log(5) \) et \( \log(3) \) les nombres suivants :** 1. \( \log(5 \times 9) = \log(5) + 2 \log(3) \) 2. \( \log\left(\frac{5}{9}\right) = \log(5) - 2 \log(3) \) 3. \( \log\left(5^{3}\right) = 3 \log(5) \) 4. \( \log\left(3^{5}\right) = 5 \log(3) \) --- #### **Question N3 :** **Simplifier les expressions suivantes :** \[ A = 5 - \log(3) \] \[ B = 0 \] \[ C = -\log(2) \] --- **Résumé des réponses :** - **Question N1 :** 1. \( 5 \log(a) \) 2. \( 0 \) 3. \( -3 \log(a) \) 4. \( \log(4) - 2 \log(a) \) - **Question N2 :** 1. \( \log(5) + 2 \log(3) \) 2. \( \log(5) - 2 \log(3) \) 3. \( 3 \log(5) \) 4. \( 5 \log(3) \) - **Question N3 :** 1. \( 5 - \log(3) \) 2. \( 0 \) 3. \( -\log(2) \) --- **Bonne continuation dans vos études !**

Solution

**Nom :** **Prénom :** **Classe :** --- ### **Évaluation N7 : Fonction logarithme décimal** --- #### **Question N1 :** **Écrire les expressions suivantes en fonction de \( \log(a) \).** 1. \( \log \left(a^{2} \times a^{3}\right) \) \[ \log(a^{2} \times a^{3}) = \log(a^{2+3}) = \log(a^{5}) = 5 \log(a) \] 2. \( \log \left(\frac{a^{3}}{a^{3}}\right) \) \[ \log \left(\frac{a^{3}}{a^{3}}\right) = \log(1) = 0 \] 3. \( \log \left(\frac{1}{a^{3}}\right) \) \[ \log \left(\frac{1}{a^{3}}\right) = \log(a^{-3}) = -3 \log(a) \] 4. \( \log \left(\frac{2^{2}}{a^{2}}\right) \) \[ \log \left(\frac{2^{2}}{a^{2}}\right) = \log(4) - \log(a^{2}) = \log(4) - 2 \log(a) \] --- #### **Question N2 :** **Exprimer en fonction de \( \log(5) \) et \( \log(3) \) les nombres suivants :** 1. \( \log(5 \times 9) \) \[ \log(5 \times 9) = \log(5) + \log(9) = \log(5) + \log(3^{2}) = \log(5) + 2 \log(3) \] 2. \( \log\left(\frac{5}{9}\right) \) \[ \log\left(\frac{5}{9}\right) = \log(5) - \log(9) = \log(5) - \log(3^{2}) = \log(5) - 2 \log(3) \] 3. \( \log\left(5^{3}\right) \) \[ \log\left(5^{3}\right) = 3 \log(5) \] 4. \( \log\left(3^{5}\right) \) \[ \log\left(3^{5}\right) = 5 \log(3) \] --- #### **Question N3 :** **Simplifier les expressions suivantes :** \[ A = \log(10^{5}) + \log\left(\frac{1}{3}\right) \] \[ \begin{align*} A &= 5 \log(10) + \log(1) - \log(3) \\ &= 5 \times 1 + 0 - \log(3) \quad (\text{car } \log(10) = 1 \text{ et } \log(1) = 0) \\ &= 5 - \log(3) \end{align*} \] --- \[ B = \log(2 + \sqrt{3}) + \log(2 - \sqrt{3}) \] \[ \begin{align*} B &= \log\left((2 + \sqrt{3})(2 - \sqrt{3})\right) \\ &= \log(4 - 3) \quad (\text{en appliquant la différence de carrés}) \\ &= \log(1) \\ &= 0 \end{align*} \] --- \[ C = 3 \log(2) - 2 \log(4) \] \[ \begin{align*} C &= 3 \log(2) - 2 \log(2^{2}) \\ &= 3 \log(2) - 2 \times 2 \log(2) \\ &= 3 \log(2) - 4 \log(2) \\ &= -\log(2) \end{align*} \] --- **Résumé des réponses simplifiées :** - **Question N1 :** 1. \( 5 \log(a) \) 2. \( 0 \) 3. \( -3 \log(a) \) 4. \( \log(4) - 2 \log(a) \) - **Question N2 :** 1. \( \log(5) + 2 \log(3) \) 2. \( \log(5) - 2 \log(3) \) 3. \( 3 \log(5) \) 4. \( 5 \log(3) \) - **Question N3 :** 1. \( 5 - \log(3) \) 2. \( 0 \) 3. \( -\log(2) \) --- **Bonne continuation dans vos études !**

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

Nom : Prénom : Classe : **Evaluation N7: Fonction logarithme décimal** **Question N1:** 1. \( \log \left(a^{2} \times a^{3}\right) = \log \left(a^{5}\right) = 5 \log (a) \) 2. \( \log \left(\frac{a^{3}}{a^{3}}\right) = \log (1) = 0 \) 3. \( \log \left(\frac{1}{a^{3}}\right) = \log (1) - \log \left(a^{3}\right) = 0 - 3 \log (a) = -3 \log (a) \) 4. \( \log \left(\frac{2^{2}}{a^{2}}\right) = \log (2^{2}) - \log \left(a^{2}\right) = 2 \log (2) - 2 \log (a) = 2(\log (2) - \log (a)) \) **Question N2:** 1. \( \log (5 \times 9) = \log (5) + \log (9) = \log (5) + 2 \log (3) \) 2. \( \log \left(\frac{5}{9}\right) = \log (5) - \log (9) = \log (5) - 2 \log (3) \) 3. \( \log \left(5^{3}\right) = 3 \log (5) \) 4. \( \log \left(3^{5}\right) = 5 \log (3) \) **Question N3:** \[ A = \log \left(10^{5}\right) + \log \left(\frac{1}{3}\right) = 5 + \log \left(\frac{1}{3}\right) = 5 - \log (3) \] \[ B = \log (2+\sqrt{3}) + \log (2-\sqrt{3}) = \log \left((2+\sqrt{3})(2-\sqrt{3})\right) = \log (4 - 3) = \log (1) = 0 \] \[ C = 3 \log (2) - 2 \log (4) = 3 \log (2) - 2 \cdot 2 \log (2) = 3 \log (2) - 4 \log (2) = -\log (2) \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy