Find the derivative of the function, \( f(x)=x^{2}-2 x^{3} \), using the definition
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To find the derivative of the function \( f(x) = x^{2} - 2x^{3} \) using the definition of a derivative, we start with the limit definition: \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] First, we calculate \( f(x + h) \): \[ f(x + h) = (x + h)^{2} - 2(x + h)^{3} \] Expanding this: \[ f(x + h) = (x^{2} + 2xh + h^{2}) - 2(x^{3} + 3x^{2}h + 3xh^{2} + h^{3}) \] Combining terms gives: \[ f(x + h) = x^{2} + 2xh + h^{2} - 2x^{3} - 6x^{2}h - 6xh^{2} - 2h^{3} \] \[ = x^{2} - 2x^{3} + 2xh + h^{2} - 6x^{2}h - 6xh^{2} - 2h^{3} \] Now substituting \( f(x + h) \) and \( f(x) \) back into the limit: \[ f'(x) = \lim_{h \to 0} \frac{(x^{2} - 2x^{3} + 2xh + h^{2} - 6x^{2}h - 6xh^{2} - 2h^{3}) - (x^{2} - 2x^{3})}{h} \] This simplifies to: \[ f'(x) = \lim_{h \to 0} \frac{2xh + h^{2} - 6x^{2}h - 6xh^{2} - 2h^{3}}{h} \] Factoring \( h \) out from the numerator: \[ f'(x) = \lim_{h \to 0} \frac{h(2x + h - 6x^{2} - 6xh - 2h^{2})}{h} \] Canceling \( h \) (where \( h \neq 0 \)) gives: \[ f'(x) = \lim_{h \to 0} (2x + h - 6x^{2} - 6xh - 2h^{2}) \] Now taking the limit as \( h \to 0 \): \[ f'(x) = 2x - 6x^{2} \] Therefore, the derivative of \( f(x) = x^{2} - 2x^{3} \) is: \[ f'(x) = 2x - 6x^{2} \]