Question
upstudy study bank question image url

Diberi bahawa \( h: x \rightarrow 2 x+3 \) dan \( k h: x \rightarrow 5-2 x \), cart fungsi \( k \). 16) Given that \( f: x \rightarrow x-3 \) and \( g f: x \rightarrow 2 x-5 \), find the value of \( g(-2) \). Diberi bahawa \( f: x \rightarrow x-3 \) dan \( g f: x \rightarrow 2 x-5 \), cari nilai \( g(-2) \). (3) Inverse Functions/ Fungsi Songsang

Ask by Brooks Vega. in Malaysia
Jan 26,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

函数 \( k(x) = 8 - x \),\( g(-2) = -3 \)

Solution

好的,让我们逐步解决这两个问题。 --- **问题 1:** 已知函数 \( h(x) = 2x + 3 \) 和复合函数 \( k \circ h(x) = 5 - 2x \),求函数 \( k(x) \)。 **解答:** 1. 根据复合函数的定义: \[ k(h(x)) = 5 - 2x \] 2. 将 \( h(x) \) 的表达式代入: \[ k(2x + 3) = 5 - 2x \] 3. 令 \( y = 2x + 3 \),则 \( x = \frac{y - 3}{2} \)。 4. 将 \( x \) 用 \( y \) 表示代入等式: \[ k(y) = 5 - 2 \left( \frac{y - 3}{2} \right) = 5 - (y - 3) = 8 - y \] 5. 因此,函数 \( k(x) \) 为: \[ k(x) = 8 - x \] --- **问题 2:** 已知函数 \( f(x) = x - 3 \) 和复合函数 \( g \circ f(x) = 2x - 5 \),求 \( g(-2) \) 的值。 **解答:** 1. 根据复合函数的定义: \[ g(f(x)) = 2x - 5 \] 2. 将 \( f(x) \) 的表达式代入: \[ g(x - 3) = 2x - 5 \] 3. 令 \( y = x - 3 \),则 \( x = y + 3 \)。 4. 将 \( x \) 用 \( y \) 表示代入等式: \[ g(y) = 2(y + 3) - 5 = 2y + 6 - 5 = 2y + 1 \] 5. 因此,函数 \( g(x) \) 为: \[ g(x) = 2x + 1 \] 6. 求 \( g(-2) \) 的值: \[ g(-2) = 2(-2) + 1 = -4 + 1 = -3 \] **答案:** 1. 函数 \( k(x) = 8 - x \) 2. \( g(-2) = -3 \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

Untuk memahami fungsi \( g \) daripada susunan fungsi lebih lanjut, kita boleh mula dengan mencari ekspresi untuk \( g \) berdasarkan \( f \). Kita tahu \( g(f(x)) = 2x - 5 \) dan \( f(x) = x - 3 \). Dalam kes ini, kita akan menggantikan \( f(x) \) ke dalam fungsi \( g \): \[ g(f(x)) = g(x - 3) = 2x - 5 \] Seterusnya, kita akan tetapkan \( y = x - 3 \), maka \( x = y + 3 \). Sekarang, kita ganti \( x \) dalam ekspresi kita: \[ g(y) = 2(y + 3) - 5 = 2y + 6 - 5 = 2y + 1 \] Jadi, kita dapatkan \( g(x) = 2x + 1 \). Sekarang kita mudah untuk mencari \( g(-2) \): \[ g(-2) = 2(-2) + 1 = -4 + 1 = -3 \] Nilai \( g(-2) \) adalah \( -3 \). Jika kita lihat lebih dalam tentang fungsi songsang, iaitu \( f^{-1}(x) \), kita dapati bahawa kita bisa menyusun semula fungsi \( f(x) = x - 3 \) menjadi fungsi terbalik \( f^{-1}(x) = x + 3 \). Fungsi terbalik ini, diberi \( y = x - 3 \), menjelaskan bahawa kita mendapatkan nilai asal dengan menambah 3 kepada hasil fungsi asli. Ini sangat berguna dalam menyelesaikan masalah di mana kita ingin kembali ke nilai asal setelah melalui beberapa pengiraan!

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy