Question
Using the following equations, find \( f(g(x)) \) : \( f(x)=-2 x+5 \) \( g(x)=3 x-9 \) \( f(g(x))=[?] x+\square \)
Ask by Little Bryant. in the United States
Jan 23,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
\( f(g(x)) = -6x + 23 \)
Solution
To find \( f(g(x)) \), we'll substitute \( g(x) \) into \( f(x) \).
Given:
- \( f(x) = -2x + 5 \)
- \( g(x) = 3x - 9 \)
**Step 1:** Substitute \( g(x) \) into \( f(x) \):
\[
f(g(x)) = f(3x - 9)
\]
**Step 2:** Apply the function \( f \) to \( 3x - 9 \):
\[
f(3x - 9) = -2(3x - 9) + 5
\]
**Step 3:** Distribute and simplify:
\[
-2(3x) + (-2)(-9) + 5 = -6x + 18 + 5 = -6x + 23
\]
So,
\[
f(g(x)) = -6x + 23
\]
**Final Answer:**
\[
f(g(x)) = -6x + 23
\]
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Extra Insights
To find \( f(g(x)) \), we start by substituting \( g(x) \) into \( f(x) \). First, we find \( g(x) \): \[ g(x) = 3x - 9 \] Now, we substitute \( g(x) \) into \( f(x) \): \[ f(g(x)) = f(3x - 9) = -2(3x - 9) + 5 \] Now, distribute the \(-2\): \[ = -6x + 18 + 5 \] \[ = -6x + 23 \] So, we have: \[ f(g(x)) = -6 x + 23 \] Thus, the final answer is: \[ f(g(x)) = -6 x + 23 \]