Answer
Решение неравенства \( \log_{2x} 0,25 \leqslant \log_{2} (32x-1) \) дает ответ: \( x > \frac{1}{32} \).
Solution
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{0.25}{2x}=\frac{\left(32x-1\right)}{2}\)
- step1: Find the domain:
\(\frac{0.25}{2x}=\frac{\left(32x-1\right)}{2},x\neq 0\)
- step2: Remove the parentheses:
\(\frac{0.25}{2x}=\frac{32x-1}{2}\)
- step3: Divide the terms:
\(\frac{1}{8x}=\frac{32x-1}{2}\)
- step4: Cross multiply:
\(2=8x\left(32x-1\right)\)
- step5: Rewrite the expression:
\(2=2\times 4x\left(32x-1\right)\)
- step6: Evaluate:
\(1=4x\left(32x-1\right)\)
- step7: Swap the sides:
\(4x\left(32x-1\right)=1\)
- step8: Expand the expression:
\(128x^{2}-4x=1\)
- step9: Move the expression to the left side:
\(128x^{2}-4x-1=0\)
- step10: Solve using the quadratic formula:
\(x=\frac{4\pm \sqrt{\left(-4\right)^{2}-4\times 128\left(-1\right)}}{2\times 128}\)
- step11: Simplify the expression:
\(x=\frac{4\pm \sqrt{\left(-4\right)^{2}-4\times 128\left(-1\right)}}{256}\)
- step12: Simplify the expression:
\(x=\frac{4\pm \sqrt{528}}{256}\)
- step13: Simplify the expression:
\(x=\frac{4\pm 4\sqrt{33}}{256}\)
- step14: Separate into possible cases:
\(\begin{align}&x=\frac{4+4\sqrt{33}}{256}\\&x=\frac{4-4\sqrt{33}}{256}\end{align}\)
- step15: Simplify the expression:
\(\begin{align}&x=\frac{1+\sqrt{33}}{64}\\&x=\frac{4-4\sqrt{33}}{256}\end{align}\)
- step16: Simplify the expression:
\(\begin{align}&x=\frac{1+\sqrt{33}}{64}\\&x=\frac{1-\sqrt{33}}{64}\end{align}\)
- step17: Check if the solution is in the defined range:
\(\begin{align}&x=\frac{1+\sqrt{33}}{64}\\&x=\frac{1-\sqrt{33}}{64}\end{align},x\neq 0\)
- step18: Find the intersection:
\(\begin{align}&x=\frac{1+\sqrt{33}}{64}\\&x=\frac{1-\sqrt{33}}{64}\end{align}\)
- step19: Rewrite:
\(x_{1}=\frac{1-\sqrt{33}}{64},x_{2}=\frac{1+\sqrt{33}}{64}\)
Solve the equation \( \frac{\text{\log}(0.25)}{\text{\log}(2)} = \frac{\text{\log}(32x-1)}{\text{\log}(2)} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{0.25}{2}=\frac{\left(32x-1\right)}{2}\)
- step1: Remove the parentheses:
\(\frac{0.25}{2}=\frac{32x-1}{2}\)
- step2: Divide the terms:
\(\frac{1}{8}=\frac{32x-1}{2}\)
- step3: Swap the sides:
\(\frac{32x-1}{2}=\frac{1}{8}\)
- step4: Multiply both sides of the equation by \(2:\)
\(\frac{32x-1}{2}\times 2=\frac{1}{8}\times 2\)
- step5: Multiply the terms:
\(32x-1=\frac{2}{8}\)
- step6: Evaluate:
\(32x-1=\frac{1}{4}\)
- step7: Move the constant to the right side:
\(32x=\frac{1}{4}+1\)
- step8: Add the numbers:
\(32x=\frac{5}{4}\)
- step9: Multiply by the reciprocal:
\(32x\times \frac{1}{32}=\frac{5}{4}\times \frac{1}{32}\)
- step10: Multiply:
\(x=\frac{5}{128}\)
Solve the equation \( 2x > 0 \).
Solve the inequality by following steps:
- step0: Solve for \(x\):
\(2x>0\)
- step1: Rewrite the expression:
\(x>0\)
Solve the equation \( 32x-1=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(32x-1=0\)
- step1: Move the constant to the right side:
\(32x=0+1\)
- step2: Remove 0:
\(32x=1\)
- step3: Divide both sides:
\(\frac{32x}{32}=\frac{1}{32}\)
- step4: Divide the numbers:
\(x=\frac{1}{32}\)
Давайте решим неравенство \( \log_{2x} 0,25 \leqslant \log_{2} (32x-1) \) шаг за шагом.
### Шаг 1: Преобразование логарифмов
Сначала преобразуем логарифмы. Мы знаем, что \( 0.25 = \frac{1}{4} = 2^{-2} \), поэтому:
\[
\log_{2}(0.25) = -2
\]
Теперь у нас есть:
\[
\log_{2x}(0.25) = \frac{\log_{2}(0.25)}{\log_{2}(2x)} = \frac{-2}{\log_{2}(2) + \log_{2}(x)} = \frac{-2}{1 + \log_{2}(x)}
\]
Теперь неравенство выглядит так:
\[
\frac{-2}{1 + \log_{2}(x)} \leqslant \log_{2}(32x-1)
\]
### Шаг 2: Решение уравнения
Теперь решим уравнение \( 32x - 1 = 0 \):
\[
32x - 1 = 0 \implies 32x = 1 \implies x = \frac{1}{32}
\]
### Шаг 3: Условия для логарифмов
Логарифм определен только для положительных значений, поэтому:
1. \( 2x > 0 \implies x > 0 \)
2. \( 32x - 1 > 0 \implies x > \frac{1}{32} \)
### Шаг 4: Объединение условий
Теперь у нас есть два условия:
1. \( x > 0 \)
2. \( x > \frac{1}{32} \)
Наиболее строгим условием является \( x > \frac{1}{32} \).
### Шаг 5: Итоговое решение
Таким образом, решение неравенства \( \log_{2x} 0,25 \leqslant \log_{2} (32x-1) \) будет:
\[
x > \frac{1}{32}
\]
Это означает, что все значения \( x \), которые больше \( \frac{1}{32} \), удовлетворяют данному неравенству.
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution