Question
upstudy study bank question image url

(4) Si \( B(x)=\frac{\cos 2 x+\operatorname{sen}^{2} x}{1-\cos ^{2} x} ; C(x)=\cot ^{2} x \quad D(x)=\cos x \) a) Denuestre que \( B(x)=C(x) \)

Ask by Moreno Clark. in Cuba
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( B(x) = C(x) \)

Solution

Para demostrar que \( B(x) = C(x) \), donde: \[ B(x) = \frac{\cos 2x + \sin^2 x}{1 - \cos^2 x} \quad \text{y} \quad C(x) = \cot^2 x, \] seguimos los siguientes pasos: 1. **Simplificar el denominador de \( B(x) \):** Sabemos que: \[ 1 - \cos^2 x = \sin^2 x \] Por lo tanto, el denominador de \( B(x) \) se simplifica a: \[ 1 - \cos^2 x = \sin^2 x \] 2. **Expresar \( \cos 2x \) en términos de \( \sin^2 x \):** Utilizamos la identidad trigonométrica: \[ \cos 2x = 1 - 2\sin^2 x \] Sustituyendo esta identidad en el numerador de \( B(x) \): \[ \cos 2x + \sin^2 x = (1 - 2\sin^2 x) + \sin^2 x = 1 - \sin^2 x \] 3. **Reescribir \( B(x) \) con las simplificaciones realizadas:** Ahora, tenemos: \[ B(x) = \frac{1 - \sin^2 x}{\sin^2 x} \] Dado que \( 1 - \sin^2 x = \cos^2 x \): \[ B(x) = \frac{\cos^2 x}{\sin^2 x} \] 4. **Relacionar con \( C(x) = \cot^2 x \):** Sabemos que: \[ \cot x = \frac{\cos x}{\sin x} \quad \Rightarrow \quad \cot^2 x = \frac{\cos^2 x}{\sin^2 x} \] Por lo tanto: \[ B(x) = \frac{\cos^2 x}{\sin^2 x} = \cot^2 x = C(x) \] **Conclusión:** Hemos demostrado que \( B(x) = C(x) \): \[ \frac{\cos 2x + \sin^2 x}{1 - \cos^2 x} = \cot^2 x \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Para demostrar que \( B(x) = C(x) \), comenzamos evaluando \( B(x) \): \[ B(x) = \frac{\cos 2x + \sin^2 x}{1 - \cos^2 x} \] Usando la identidad \( 1 - \cos^2 x = \sin^2 x \), podemos simplificar: \[ B(x) = \frac{\cos 2x + \sin^2 x}{\sin^2 x} \] Nota que usando la identidad de ángulo doble, tenemos \( \cos 2x = 1 - 2\sin^2 x \). Sustituyendo esto en nuestra expresión, obtenemos: \[ B(x) = \frac{(1 - 2\sin^2 x) + \sin^2 x}{\sin^2 x} = \frac{1 - \sin^2 x}{\sin^2 x} = \frac{\cos^2 x}{\sin^2 x} \] Ahora, podemos identificar que \( \frac{\cos^2 x}{\sin^2 x} = \cot^2 x \), así que: \[ B(x) = \cot^2 x = C(x) \] Por lo tanto, hemos verificado que \( B(x) = C(x) \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy