Question
upstudy study bank question image url

Question Progress \( 2-\frac{x+1}{x-2}-\frac{x-4}{x+2} \) can be written as a single fraction in the form \( \frac{a x+b}{x^{2}-4} \) where \( a \) and \( b \) are integers. Work out the value of \( a \) and the value of \( b \).

Ask by Turner George. in the United Kingdom
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( a = 3 \) and \( b = -18 \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

The Deep Dive

To combine the expression \( 2-\frac{x+1}{x-2}-\frac{x-4}{x+2} \) into a single fraction, we first rewrite \( 2 \) in terms of the common denominator \( (x-2)(x+2) \), which is \( x^2 - 4 \). We have: \[ 2 = \frac{2(x^2 - 4)}{x^2 - 4} = \frac{2x^2 - 8}{x^2 - 4} \] Now we rewrite the other fractions with the same denominator: \[ -\frac{x+1}{x-2} = -\frac{(x+1)(x+2)}{(x-2)(x+2)} = -\frac{x^2 + 3x + 2}{x^2 - 4} \] \[ -\frac{x-4}{x+2} = -\frac{(x-4)(x-2)}{(x+2)(x-2)} = -\frac{x^2 - 2x + 8}{x^2 - 4} \] Now we combine them: \[ \frac{2x^2 - 8 - (x^2 + 3x + 2) - (x^2 - 2x + 8)}{x^2 - 4} \] Now simplify the numerator: \[ 2x^2 - 8 - x^2 - 3x - 2 - x^2 + 2x - 8 \] Combine like terms: \[ (2x^2 - x^2 - x^2) + (-3x + 2x) + (-8 - 2 - 8) = 0x^2 - 1x - 18 = -x - 18 \] So we have: \[ \frac{-x - 18}{x^2 - 4} \] From this, we identify \( a = -1 \) and \( b = -18 \). Therefore, the values are: - \( a = -1 \) - \( b = -18 \)

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy