17) ABCDE beshburchakda \( \mathrm{AE}=\mathrm{AB} ; \mathrm{BC}=\mathrm{CD} \) va \( \angle A=\angle C=90^{\circ} \) bo'lsin. Agar \( \mathrm{AC}=6 \) bo'lsa, bu beshburchak yuzini toping.
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
Beshburchakning yuzini topish uchun avvalo uning tuzilishiga e'tibor beramiz. Bu beshburchak \( \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E} \) nuqtalaridan iborat bo'lib, \( \mathrm{AE}=\mathrm{AB} \) va \( \mathrm{BC}=\mathrm{CD} \) shartlari, shuningdek, \( \angle A=\angle C=90^{\circ} \) ekanligi uning to'g'ri burchakli bo'lishini anglatadi. Endi, \( \mathrm{AC} \) uzunligini bilgan holda, \( \mathrm{AB} \) va \( \mathrm{AE} \) uzunliklarini topamiz. \( \triangle ABC \) to'g'ri burchakli uchburchak sifatida, Pifagor teoremasidan foydalanamiz: \[ \mathrm{AB}^2 + \mathrm{BC}^2 = \mathrm{AC}^2 \Rightarrow \mathrm{AB}^2 + \mathrm{BC}^2 = 6^2 = 36. \] \( \mathrm{BC}=\mathrm{CD} \) ekanligini hisobga olgan holda, \( \mathrm{BC}=x \) deb olamiz, shunda: \[ \mathrm{AB}^2 + x^2 = 36. \] Bu formulani dastlabki shartlar bilan birga ko'rib chiqsak, to'rtburchakning yuzini ushbu ikki to'g'ri burchakli uchburchak yuzlari sifatida hisoblashimiz mumkin: \[ \text{Yuz} = \frac{1}{2} \times \mathrm{AB} \times x + \frac{1}{2} \times x \times x = \frac{1}{2} \mathrm{AB} x + \frac{1}{2} x^2. \] Agar \( x = 3 \) mi, \( \mathrm{AB} = 3 \) bo'lsa, eng oxirida, beshburchakning umumiy yuzini topamiz: \[ \text{Yuz} = 18. \] Demak, beshburchakning yuzi \( 18 \) kvadrat birlikni tashkil qiladi.