Question
upstudy study bank question image url

Find the SUM of all interior angles for each polygon. \( \begin{array}{llll}\text { 11) regular dodecagon } & \text { 12) regular heptagon } \\ \begin{array}{llll}\text { A) } 2520^{\circ} & \text { B) } 1620^{\circ} & \text { A) } 1440^{\circ} & \text { B) } 540^{\circ} \\ \text { C) } 1980^{\circ} & \text { D) } 1800^{\circ} & \text { C) } 900^{\circ} & \text { D) } 1260^{\circ}\end{array} \\ \begin{array}{llll}\text { 13) regular quadrilateral } & \text { B) } 1080^{\circ} & \text { 14) regular } 24 \text {-gon } \\ \text { A) } 1260^{\circ} & \text { D) } 540^{\circ} & \text { A) } 3960^{\circ} & \text { B) } 3780^{\circ} \\ \text { C) } 360^{\circ} & \text { C) } 4680^{\circ} & \text { D) } 4860^{\circ}\end{array}\end{array} \)

Ask by Willis Wade. in the United States
Jan 25,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The sum of the interior angles for each polygon is as follows: - **11) Regular Dodecagon:** 1800° - **12) Regular Heptagon:** 900° - **13) Regular Quadrilateral:** 360° - **14) Regular 24-gon:** 3960°

Solution

To find the sum of all interior angles for each regular polygon, we use the formula: \[ \text{Sum of interior angles} = (n - 2) \times 180^\circ \] where \( n \) is the number of sides of the polygon. Let's apply this formula to each of the given polygons: --- ### **11) Regular Dodecagon** - **Number of sides (\( n \))**: 12 \[ \text{Sum} = (12 - 2) \times 180^\circ = 10 \times 180^\circ = 1800^\circ \] **Answer:** **D) \(1800^\circ\)** --- ### **12) Regular Heptagon** - **Number of sides (\( n \))**: 7 \[ \text{Sum} = (7 - 2) \times 180^\circ = 5 \times 180^\circ = 900^\circ \] **Answer:** **C) \(900^\circ\)** --- ### **13) Regular Quadrilateral** A regular quadrilateral is a square. - **Number of sides (\( n \))**: 4 \[ \text{Sum} = (4 - 2) \times 180^\circ = 2 \times 180^\circ = 360^\circ \] **Answer:** **C) \(360^\circ\)** --- ### **14) Regular 24-gon** - **Number of sides (\( n \))**: 24 \[ \text{Sum} = (24 - 2) \times 180^\circ = 22 \times 180^\circ = 3960^\circ \] **Answer:** **A) \(3960^\circ\)** --- ### **Summary of Answers:** - **11) Regular Dodecagon:** D) \(1800^\circ\) - **12) Regular Heptagon:** C) \(900^\circ\) - **13) Regular Quadrilateral:** C) \(360^\circ\) - **14) Regular 24-gon:** A) \(3960^\circ\) --- If you have any further questions or need additional explanations, feel free to ask!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To find the sum of all interior angles of a polygon, you can use the formula \( (n - 2) \times 180^\circ \), where \( n \) is the number of sides. For the regular dodecagon (12-sided polygon), the sum of the interior angles is: \[ (12 - 2) \times 180^\circ = 10 \times 180^\circ = 1800^\circ. \] So the answer for the dodecagon is \( D) \, 1800^{\circ} \). For the regular heptagon (7-sided polygon), the calculation is: \[ (7 - 2) \times 180^\circ = 5 \times 180^\circ = 900^\circ. \] Thus, the answer for the heptagon is \( C) \, 900^{\circ} \). For the regular quadrilateral (4-sided polygon), we have: \[ (4 - 2) \times 180^\circ = 2 \times 180^\circ = 360^\circ. \] So, the answer is \( C) \, 360^{\circ} \). For the regular 24-gon, we calculate: \[ (24 - 2) \times 180^\circ = 22 \times 180^\circ = 3960^\circ. \] Hence, the answer is \( A) \, 3960^{\circ}. \)

Related Questions

Latest Geometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy