Question
upstudy study bank question image url

Find an equation for the line with the given properties. Express your answer using either the general form or the slope-intercept form of the equation of a line. Containing the points \( (3,6) \) and \( (5,5) \) The equation is (Type an equation. Simplify your answer.)

Ask by Grant Ray. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The equation of the line is \( y = -\frac{1}{2}x + \frac{15}{2} \).

Solution

To find the equation of the line passing through the points \( (3, 6) \) and \( (5, 5) \), follow these steps: 1. **Calculate the slope (m):** \[ m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 6}{5 - 3} = \frac{-1}{2} = -\frac{1}{2} \] 2. **Use the slope-intercept form (y = mx + b) and plug in one of the points to find \( b \):** Using the point \( (3, 6) \): \[ 6 = -\frac{1}{2}(3) + b \\ 6 = -\frac{3}{2} + b \\ b = 6 + \frac{3}{2} = \frac{12}{2} + \frac{3}{2} = \frac{15}{2} \] 3. **Write the final equation:** \[ y = -\frac{1}{2}x + \frac{15}{2} \] **Final Answer:** \[ y = -\frac{1}{2}x + \frac{15}{2} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To find the equation of the line containing the points \( (3,6) \) and \( (5,5) \), we first need to calculate the slope \( m \). The formula for the slope between two points \( (x_1, y_1) \) and \( (x_2, y_2) \) is: \[ m = \frac{y_2 - y_1}{x_2 - x_1} \] Plugging in our points: \[ m = \frac{5 - 6}{5 - 3} = \frac{-1}{2} \] Now, we can use the point-slope form \( y - y_1 = m(x - x_1) \). Using point \( (3, 6) \): \[ y - 6 = -\frac{1}{2}(x - 3) \] Distributing and simplifying gives: \[ y - 6 = -\frac{1}{2}x + \frac{3}{2} \] \[ y = -\frac{1}{2}x + \frac{3}{2} + 6 \] \[ y = -\frac{1}{2}x + \frac{15}{2} \] So, the equation of the line in slope-intercept form is: \[ y = -\frac{1}{2}x + \frac{15}{2} \]

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy