Algebraically determine the \( x \) - and \( y \)-intercepts of the graph of \( f(x)= \) Find the inverse function of \( f(x)=\log _{4}(x+2)+1 \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To find the \( x \)-intercept of the function \( f(x) = \log_4(x + 2) + 1 \), set \( f(x) = 0 \): \[ 0 = \log_4(x + 2) + 1 \] This simplifies to \( \log_4(x + 2) = -1 \). Converting from logarithmic form, we find: \[ x + 2 = 4^{-1} \Rightarrow x + 2 = \frac{1}{4} \Rightarrow x = \frac{1}{4} - 2 = -\frac{7}{4} \] So the \( x \)-intercept is \( \left(-\frac{7}{4}, 0\right) \). For the \( y \)-intercept, plug in \( x = 0 \): \[ f(0) = \log_4(0 + 2) + 1 = \log_4(2) + 1 = \frac{1}{2} + 1 = \frac{3}{2} \] Thus, the \( y \)-intercept is \( (0, \frac{3}{2}) \). To find the inverse function \( f^{-1}(y) \), set \( y = \log_4(x + 2) + 1 \) and solve for \( x \): \[ y - 1 = \log_4(x + 2) \] Converting to exponential form gives: \[ x + 2 = 4^{y - 1} \Rightarrow x = 4^{y - 1} - 2 \] Thus, the inverse function is: \[ f^{-1}(y) = 4^{y - 1} - 2 \]