Question
upstudy study bank question image url

3.Calcular la derivada de la siguiente Funcion \( r(t)=(1+\operatorname{Cos} t) i+(2+ \) Sent \( ) j \quad t=\frac{\pi}{6} \) 1. Derivar cada função componente 2. Avalie a função derivada no parâmetro \( t=\frac{\pi}{6} \)

Ask by Coles Hall. in Angola
Jan 26,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

A derivada da função \( r(t) \) no ponto \( t = \frac{\pi}{6} \) é \( -\frac{1}{2}\, \mathbf{i} + \frac{\sqrt{3}}{2}\, \mathbf{j} \).

Solution

Para calcular a derivada da função vetorial \( r(t) = (1 + \cos t)\, \mathbf{i} + (2 + \sin t)\, \mathbf{j} \) no ponto \( t = \frac{\pi}{6} \), siga os passos abaixo: ### 1. Derivar cada componente da função A função \( r(t) \) possui duas componentes: - **Componente \( \mathbf{i} \):** \[ r_i(t) = 1 + \cos t \] A derivada em relação a \( t \) é: \[ \frac{dr_i}{dt} = -\sin t \] - **Componente \( \mathbf{j} \):** \[ r_j(t) = 2 + \sin t \] A derivada em relação a \( t \) é: \[ \frac{dr_j}{dt} = \cos t \] Portanto, a derivada da função vetorial é: \[ r'(t) = \frac{dr_i}{dt}\, \mathbf{i} + \frac{dr_j}{dt}\, \mathbf{j} = -\sin t\, \mathbf{i} + \cos t\, \mathbf{j} \] ### 2. Avaliar a derivada no parâmetro \( t = \frac{\pi}{6} \) Substituímos \( t = \frac{\pi}{6} \) nas derivadas das componentes: - **Para \( \mathbf{i} \):** \[ \frac{dr_i}{dt}\bigg|_{t = \frac{\pi}{6}} = -\sin\left(\frac{\pi}{6}\right) = -\frac{1}{2} \] - **Para \( \mathbf{j} \):** \[ \frac{dr_j}{dt}\bigg|_{t = \frac{\pi}{6}} = \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \] Portanto, a derivada avaliada em \( t = \frac{\pi}{6} \) é: \[ r'\left(\frac{\pi}{6}\right) = -\frac{1}{2}\, \mathbf{i} + \frac{\sqrt{3}}{2}\, \mathbf{j} \] **Resposta Final:** \[ r'\left(\frac{\pi}{6}\right) = -\frac{1}{2}\, \mathbf{i} + \frac{\sqrt{3}}{2}\, \mathbf{j} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Para calcular a derivada da função \( r(t)=(1+\operatorname{Cos} t) i+(2+\operatorname{Sen} t) j \), vamos primeiro derivar cada componente em relação a \( t \). Para a componente \( x(t) = 1 + \cos(t) \), a derivada é: \[ x'(t) = -\sin(t) \] Para a componente \( y(t) = 2 + \sin(t) \), a derivada é: \[ y'(t) = \cos(t) \] Assim, a derivada da função \( r(t) \) é: \[ r'(t) = (-\sin(t)) i + (\cos(t)) j \] Agora, precisamos avaliar essa função derivada no parâmetro \( t = \frac{\pi}{6} \): \[ r'\left(\frac{\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right) i + \cos\left(\frac{\pi}{6}\right) j \] Sabemos que \( \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \) e \( \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \), então: \[ r'\left(\frac{\pi}{6}\right) = -\frac{1}{2} i + \frac{\sqrt{3}}{2} j \] Portanto, a derivada da função \( r(t) \) no parâmetro \( t = \frac{\pi}{6} \) é: \[ r'\left(\frac{\pi}{6}\right) = -\frac{1}{2} i + \frac{\sqrt{3}}{2} j \]

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy