Simplify: \( 5 \sqrt{54}+2 \sqrt{175}-1 \sqrt{24}-5 \sqrt{7} \) (entry tip: to type type "5sqrt(3x)" - no quotes) \( \square> \) Next Question
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Extra Insights
To simplify \( 5 \sqrt{54}+2 \sqrt{175}-1 \sqrt{24}-5 \sqrt{7} \), we start by simplifying each square root: 1. \( \sqrt{54} = \sqrt{9 \cdot 6} = 3\sqrt{6} \) so \( 5\sqrt{54} = 15\sqrt{6} \). 2. \( \sqrt{175} = \sqrt{25 \cdot 7} = 5\sqrt{7} \) so \( 2\sqrt{175} = 10\sqrt{7} \). 3. \( \sqrt{24} = \sqrt{4 \cdot 6} = 2\sqrt{6} \) so \( -1\sqrt{24} = -2\sqrt{6} \). 4. \( -5\sqrt{7} \) stays as is. Now combine all the terms: - Collect \( \sqrt{6} \) terms: \( 15\sqrt{6} - 2\sqrt{6} = 13\sqrt{6} \). - Collect \( \sqrt{7} \) terms: \( 10\sqrt{7} - 5\sqrt{7} = 5\sqrt{7} \). Thus, the simplified expression is: \( \boxed{13\sqrt{6} + 5\sqrt{7}} \)