Question
upstudy study bank question image url

GuidedPractice 1. Verify that \( \cot ^{2} \theta-\cos ^{2} \theta=\cot ^{2} \theta \cos ^{2} \theta \) is an identity

Ask by Turner Maxwell. in the United Arab Emirates
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The given expression \( \cot ^{2} \theta - \cos ^{2} \theta = \cot ^{2} \theta \cos ^{2} \theta \) is an identity.

Solution

To verify that the given expression is an identity, we need to simplify the expression and check if it is equal to zero. Given expression: \( \cot ^{2} \theta - \cos ^{2} \theta = \cot ^{2} \theta \cos ^{2} \theta \) Let's simplify the expression step by step: 1. Simplify the left side of the equation: \( \cot ^{2} \theta - \cos ^{2} \theta \) 2. Simplify the right side of the equation: \( \cot ^{2} \theta \cos ^{2} \theta \) 3. Check if the simplified expressions are equal to each other. Let's simplify the expressions step by step. Simplify the expression by following steps: - step0: Solution: \(\cot^{2}\left(\theta \right)-\cos^{2}\left(\theta \right)\) - step1: Transform the expression: \(\left(\cot\left(\theta \right)+\cos\left(\theta \right)\right)\left(\cot\left(\theta \right)-\cos\left(\theta \right)\right)\) - step2: Transform the expression: \(\frac{\cos\left(\theta \right)+\cos\left(\theta \right)\sin\left(\theta \right)}{\sin\left(\theta \right)}\times \left(\cot\left(\theta \right)-\cos\left(\theta \right)\right)\) - step3: Transform the expression: \(\frac{\cos\left(\theta \right)+\cos\left(\theta \right)\sin\left(\theta \right)}{\sin\left(\theta \right)}\times \frac{\cos\left(\theta \right)-\cos\left(\theta \right)\sin\left(\theta \right)}{\sin\left(\theta \right)}\) - step4: Multiply the terms: \(\frac{\left(\cos\left(\theta \right)+\cos\left(\theta \right)\sin\left(\theta \right)\right)\left(\cos\left(\theta \right)-\cos\left(\theta \right)\sin\left(\theta \right)\right)}{\sin\left(\theta \right)\sin\left(\theta \right)}\) - step5: Multiply the terms: \(\frac{\left(\cos\left(\theta \right)+\cos\left(\theta \right)\sin\left(\theta \right)\right)\left(\cos\left(\theta \right)-\cos\left(\theta \right)\sin\left(\theta \right)\right)}{\sin^{2}\left(\theta \right)}\) - step6: Transform the expression: \(\frac{\cos^{2}\left(\theta \right)\left(1+\sin\left(\theta \right)\right)\left(1-\sin\left(\theta \right)\right)}{\sin^{2}\left(\theta \right)}\) - step7: Transform the expression: \(\frac{\cos^{2}\left(\theta \right)\left(-\left(-\cos^{2}\left(\theta \right)\right)\right)}{\sin^{2}\left(\theta \right)}\) - step8: Calculate: \(\frac{\cos^{2}\left(\theta \right)\cos^{2}\left(\theta \right)}{\sin^{2}\left(\theta \right)}\) - step9: Multiply the terms: \(\frac{\cos^{4}\left(\theta \right)}{\sin^{2}\left(\theta \right)}\) - step10: Transform the expression: \(\cos^{4}\left(\theta \right)\csc^{2}\left(\theta \right)\) - step11: Multiply the terms: \(\csc^{2}\left(\theta \right)\cos^{4}\left(\theta \right)\) Calculate or simplify the expression \( \\cot^{2}(\\theta) \\cos^{2}(\\theta) \). Simplify the expression by following steps: - step0: Solution: \(\cot^{2}\left(\theta \right)\cos^{2}\left(\theta \right)\) - step1: Multiply the terms: \(\left(\cot\left(\theta \right)\cos\left(\theta \right)\right)^{2}\) - step2: Transform the expression: \(\left(\frac{\cos^{2}\left(\theta \right)}{\sin\left(\theta \right)}\right)^{2}\) - step3: Simplify: \(\frac{\cos^{4}\left(\theta \right)}{\sin^{2}\left(\theta \right)}\) - step4: Rewrite the expression: \(\cos^{4}\left(\theta \right)\sin^{-2}\left(\theta \right)\) - step5: Simplify: \(\cos^{4}\left(\theta \right)\left(1+\cot^{2}\left(\theta \right)\right)\) - step6: Rewrite the expression: \(\cos^{4}\left(\theta \right)+\cot^{2}\left(\theta \right)\cos^{4}\left(\theta \right)\) - step7: Calculate: \(\cos^{4}\left(\theta \right)+\left(\csc^{2}\left(\theta \right)-1\right)\cos^{4}\left(\theta \right)\) - step8: Calculate: \(\csc^{2}\left(\theta \right)\cos^{4}\left(\theta \right)\) The simplified expressions are \( \cot ^{2} \theta - \cos ^{2} \theta = \cot ^{2} \theta \cos ^{2} \theta \) and \( \cot ^{2} \theta \cos ^{2} \theta = \cot ^{2} \theta \cos ^{2} \theta \). Therefore, the given expression \( \cot ^{2} \theta - \cos ^{2} \theta = \cot ^{2} \theta \cos ^{2} \theta \) is an identity.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To verify that the equation \( \cot ^{2} \theta - \cos ^{2} \theta = \cot ^{2} \theta \cos ^{2} \theta \) is an identity, we can start by rewriting \( \cot^2 \theta \) in terms of sine and cosine. Remember that \( \cot \theta = \frac{\cos \theta}{\sin \theta} \), therefore: \[ \cot^{2} \theta = \frac{\cos^{2} \theta}{\sin^{2} \theta} \] Substituting this into the left side of the original equation, we have: \[ \frac{\cos^{2} \theta}{\sin^{2} \theta} - \cos^{2} \theta \] To combine these terms, find a common denominator \(\sin^{2} \theta\): \[ \frac{\cos^{2} \theta - \cos^{2} \theta \sin^{2} \theta}{\sin^{2} \theta} = \frac{\cos^{2} \theta (1 - \sin^{2} \theta)}{\sin^{2} \theta} \] Using the Pythagorean identity \(1 - \sin^{2} \theta = \cos^{2} \theta\), the equation simplifies to: \[ \frac{\cos^{2} \theta \cos^{2} \theta}{\sin^{2} \theta} = \frac{\cos^{4} \theta}{\sin^{2} \theta} \] Now moving to the right-hand side: \[ \cot^2 \theta \cos^2 \theta = \left( \frac{\cos^2 \theta}{\sin^2 \theta} \right) \cos^2 \theta = \frac{\cos^{4} \theta}{\sin^{2} \theta} \] Since both sides equal \( \frac{\cos^4 \theta}{\sin^2 \theta} \), we have verified that the statement \( \cot^{2} \theta - \cos^{2} \theta = \cot^{2} \theta \cos^{2} \theta \) is indeed an identity!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy