Answer
The given expression \( \cot ^{2} \theta - \cos ^{2} \theta = \cot ^{2} \theta \cos ^{2} \theta \) is an identity.
Solution
To verify that the given expression is an identity, we need to simplify the expression and check if it is equal to zero.
Given expression: \( \cot ^{2} \theta - \cos ^{2} \theta = \cot ^{2} \theta \cos ^{2} \theta \)
Let's simplify the expression step by step:
1. Simplify the left side of the equation:
\( \cot ^{2} \theta - \cos ^{2} \theta \)
2. Simplify the right side of the equation:
\( \cot ^{2} \theta \cos ^{2} \theta \)
3. Check if the simplified expressions are equal to each other.
Let's simplify the expressions step by step.
Simplify the expression by following steps:
- step0: Solution:
\(\cot^{2}\left(\theta \right)-\cos^{2}\left(\theta \right)\)
- step1: Transform the expression:
\(\left(\cot\left(\theta \right)+\cos\left(\theta \right)\right)\left(\cot\left(\theta \right)-\cos\left(\theta \right)\right)\)
- step2: Transform the expression:
\(\frac{\cos\left(\theta \right)+\cos\left(\theta \right)\sin\left(\theta \right)}{\sin\left(\theta \right)}\times \left(\cot\left(\theta \right)-\cos\left(\theta \right)\right)\)
- step3: Transform the expression:
\(\frac{\cos\left(\theta \right)+\cos\left(\theta \right)\sin\left(\theta \right)}{\sin\left(\theta \right)}\times \frac{\cos\left(\theta \right)-\cos\left(\theta \right)\sin\left(\theta \right)}{\sin\left(\theta \right)}\)
- step4: Multiply the terms:
\(\frac{\left(\cos\left(\theta \right)+\cos\left(\theta \right)\sin\left(\theta \right)\right)\left(\cos\left(\theta \right)-\cos\left(\theta \right)\sin\left(\theta \right)\right)}{\sin\left(\theta \right)\sin\left(\theta \right)}\)
- step5: Multiply the terms:
\(\frac{\left(\cos\left(\theta \right)+\cos\left(\theta \right)\sin\left(\theta \right)\right)\left(\cos\left(\theta \right)-\cos\left(\theta \right)\sin\left(\theta \right)\right)}{\sin^{2}\left(\theta \right)}\)
- step6: Transform the expression:
\(\frac{\cos^{2}\left(\theta \right)\left(1+\sin\left(\theta \right)\right)\left(1-\sin\left(\theta \right)\right)}{\sin^{2}\left(\theta \right)}\)
- step7: Transform the expression:
\(\frac{\cos^{2}\left(\theta \right)\left(-\left(-\cos^{2}\left(\theta \right)\right)\right)}{\sin^{2}\left(\theta \right)}\)
- step8: Calculate:
\(\frac{\cos^{2}\left(\theta \right)\cos^{2}\left(\theta \right)}{\sin^{2}\left(\theta \right)}\)
- step9: Multiply the terms:
\(\frac{\cos^{4}\left(\theta \right)}{\sin^{2}\left(\theta \right)}\)
- step10: Transform the expression:
\(\cos^{4}\left(\theta \right)\csc^{2}\left(\theta \right)\)
- step11: Multiply the terms:
\(\csc^{2}\left(\theta \right)\cos^{4}\left(\theta \right)\)
Calculate or simplify the expression \( \\cot^{2}(\\theta) \\cos^{2}(\\theta) \).
Simplify the expression by following steps:
- step0: Solution:
\(\cot^{2}\left(\theta \right)\cos^{2}\left(\theta \right)\)
- step1: Multiply the terms:
\(\left(\cot\left(\theta \right)\cos\left(\theta \right)\right)^{2}\)
- step2: Transform the expression:
\(\left(\frac{\cos^{2}\left(\theta \right)}{\sin\left(\theta \right)}\right)^{2}\)
- step3: Simplify:
\(\frac{\cos^{4}\left(\theta \right)}{\sin^{2}\left(\theta \right)}\)
- step4: Rewrite the expression:
\(\cos^{4}\left(\theta \right)\sin^{-2}\left(\theta \right)\)
- step5: Simplify:
\(\cos^{4}\left(\theta \right)\left(1+\cot^{2}\left(\theta \right)\right)\)
- step6: Rewrite the expression:
\(\cos^{4}\left(\theta \right)+\cot^{2}\left(\theta \right)\cos^{4}\left(\theta \right)\)
- step7: Calculate:
\(\cos^{4}\left(\theta \right)+\left(\csc^{2}\left(\theta \right)-1\right)\cos^{4}\left(\theta \right)\)
- step8: Calculate:
\(\csc^{2}\left(\theta \right)\cos^{4}\left(\theta \right)\)
The simplified expressions are \( \cot ^{2} \theta - \cos ^{2} \theta = \cot ^{2} \theta \cos ^{2} \theta \) and \( \cot ^{2} \theta \cos ^{2} \theta = \cot ^{2} \theta \cos ^{2} \theta \).
Therefore, the given expression \( \cot ^{2} \theta - \cos ^{2} \theta = \cot ^{2} \theta \cos ^{2} \theta \) is an identity.
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution