Question
\( \left. \begin{array} { l l } { - 5 \cdot ( - 6 x ^ { 2 } ) } & { - 6 x - ( + 7 x ) } \\ { - 2 a ^ { 3 } \cdot ( - 4 a ) } & { + 10 a \cdot ( - a ^ { 4 } ) } \\ { - 8 \cdot ( - 5 x ) } & { - a b - ( - 2 a ) } \\ { - 5 a \cdot ( - 4 a ^ { 2 } ) } & { - 8 a ^ { 2 } - ( - 3 a ^ { 4 } ) } \end{array} \right. \)
Ask by Schneider Gray. in Italy
Jan 23,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
Ecco le espressioni semplificate:
1.
\[
-5 \cdot (-6x^2) = 30x^2
\]
\[
-6x - (+7x) = -13x
\]
2.
\[
-2a^3 \cdot (-4a) = 8a^4
\]
\[
10a \cdot (-a^4) = -10a^5
\]
3.
\[
-8 \cdot (-5x) = 40x
\]
\[
-ab - (-2a) = -ab + 2a
\]
4.
\[
-5a \cdot (-4a^2) = 20a^3
\]
\[
-8a^2 - (-3a^4) = 3a^4 - 8a^2
\]
Solution
Ecco le espressioni semplificate:
1.
\[
-5 \cdot (-6x^2) = 30x^2
\]
\[
-6x - (+7x) = -13x
\]
2.
\[
-2a^3 \cdot (-4a) = 8a^4
\]
\[
10a \cdot (-a^4) = -10a^5
\]
3.
\[
-8 \cdot (-5x) = 40x
\]
\[
-ab - (-2a) = -ab + 2a
\]
4.
\[
-5a \cdot (-4a^2) = 20a^3
\]
\[
-8a^2 - (-3a^4) = 3a^4 - 8a^2
\]
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
The Deep Dive
Let's break down those expressions into more manageable chunks, shall we? For the first set, \(-5 \cdot (-6x^2)\) equals \(30x^2\) and \(-6x - (+7x)\) combines to \(-13x\). Moving on to the second pair, \(-2a^3 \cdot (-4a)\) simplifies to \(8a^4\) and \(+10a \cdot (-a^4)\) results in \(-10a^5\). Next, \(-8 \cdot (-5x)\) gives \(40x\) while \(-ab - (-2a)\) simplifies to \(2a - ab\). Finally, \(-5a \cdot (-4a^2)\) leads to \(20a^3\) and \(-8a^2 - (-3a^4)\) becomes \(3a^4 - 8a^2\). Now you’re all set for some exciting algebra practice!