Expand and simplify: \( \begin{array}{lll}\text { 1) } \\ \text { 3) } \\ \text { 3) } & (2 x+4)\left(x^{2}+2 x+3\right) & \text { (2) } \\ (x-1)\left(x^{2}-2 x+3\right) \\ \text { 5) } & (3 x-y)\left(2 x^{2}+4 x y-y^{2}\right) & \text { (4) } \\ & \text { (6) }(2 x-4)\left(x^{2}-3 x+1\right) \\ & & \end{array} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Mind Expander
Sure! Let's tackle each expression step by step. 1) For \( (2x + 4)(x^2 + 2x + 3) \): First, distribute \( (2x + 4) \) across \( (x^2 + 2x + 3) \): \[ 2x(x^2) + 2x(2x) + 2x(3) + 4(x^2) + 4(2x) + 4(3) = 2x^3 + 4x^2 + 6x + 4x^2 + 8x + 12 \] Combine like terms: \[ = 2x^3 + 8x^2 + 14x + 12 \] 2) For \( (x-1)(x^2-2x+3) \): Distributing \( (x-1) \) gives: \[ x(x^2) + x(-2x) + x(3) - 1(x^2) + 1(2x) - 1(3) = x^3 - 2x^2 + 3x - x^2 + 2x - 3 \] Combine like terms: \[ = x^3 - 3x^2 + 5x - 3 \] 3) For \( (3x-y)(2x^2+4xy-y^2) \): Distribute \( (3x-y) \): \[ 3x(2x^2) + 3x(4xy) + 3x(-y^2) - y(2x^2) - y(4xy) + y(y^2) = 6x^3 + 12x^2y - 3xy^2 - 2xy^2 - 4y^2x + y^3 \] Combine like terms: \[ = 6x^3 + 12xy^2 - 4xy^2 + y^3 = 6x^3 + 10xy^2 + y^3 \] 4) For \( (2x-4)(x^2-3x+1) \): Distributing \( (2x-4) \): \[ 2x(x^2) + 2x(-3x) + 2x(1) - 4(x^2) + 4(3x) - 4(1) = 2x^3 - 6x^2 + 2x - 4x^2 + 12x - 4 \] Combine like terms: \[ = 2x^3 - 10x^2 + 14x - 4 \] So, summarizing the expanded and simplified results: 1) \( 2x^3 + 8x^2 + 14x + 12 \) 2) \( x^3 - 3x^2 + 5x - 3 \) 3) \( 6x^3 + 10xy^2 + y^3 \) 4) \( 2x^3 - 10x^2 + 14x - 4 \)