Question
upstudy study bank question image url

Use any method to evaluate the integral. \( \int \frac{x d x}{\sqrt{64 x^{2}-1}} \)

Ask by Beck Greene. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The integral \( \int \frac{x}{\sqrt{64x^2-1}}dx \) equals \( \frac{\sqrt{64x^2-1}}{64} + C \).

Solution

Calculate the integral \( \int \frac{x}{\sqrt{64x^2-1}}dx \). Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int \frac{x}{\sqrt{64x^{2}-1}} dx\) - step1: Rewrite the expression: \(\int \frac{x}{\left(64x^{2}-1\right)^{\frac{1}{2}}} dx\) - step2: Use the substitution \(dx=\frac{1}{128x} dt\) to transform the integral\(:\) \(\int \frac{x}{\left(64x^{2}-1\right)^{\frac{1}{2}}}\times \frac{1}{128x} dt\) - step3: Simplify: \(\int \frac{1}{128\left(64x^{2}-1\right)^{\frac{1}{2}}} dt\) - step4: Use the substitution \(t=64x^{2}\) to transform the integral\(:\) \(\int \frac{1}{128\left(t-1\right)^{\frac{1}{2}}} dt\) - step5: Rewrite the expression: \(\int \frac{1}{128}\times \frac{1}{\left(t-1\right)^{\frac{1}{2}}} dt\) - step6: Use properties of integrals: \(\frac{1}{128}\times \int \frac{1}{\left(t-1\right)^{\frac{1}{2}}} dt\) - step7: Use the substitution \(dt=1 dv\) to transform the integral\(:\) \(\frac{1}{128}\times \int \frac{1}{\left(t-1\right)^{\frac{1}{2}}}\times 1 dv\) - step8: Simplify: \(\frac{1}{128}\times \int \frac{1}{\left(t-1\right)^{\frac{1}{2}}} dv\) - step9: Use the substitution \(v=t-1\) to transform the integral\(:\) \(\frac{1}{128}\times \int \frac{1}{v^{\frac{1}{2}}} dv\) - step10: Evaluate the integral: \(\frac{1}{128}\times \frac{v^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}\) - step11: Simplify: \(\frac{1}{128}\times \frac{v^{\frac{1}{2}}}{\frac{1}{2}}\) - step12: Multiply the terms: \(\frac{v^{\frac{1}{2}}}{128\times \frac{1}{2}}\) - step13: Multiply the terms: \(\frac{v^{\frac{1}{2}}}{64}\) - step14: Substitute back: \(\frac{\left(t-1\right)^{\frac{1}{2}}}{64}\) - step15: Substitute back: \(\frac{\left(64x^{2}-1\right)^{\frac{1}{2}}}{64}\) - step16: Simplify: \(\frac{\sqrt{64x^{2}-1}}{64}\) - step17: Add the constant of integral C: \(\frac{\sqrt{64x^{2}-1}}{64} + C, C \in \mathbb{R}\) The integral of \( \frac{x}{\sqrt{64x^2-1}} \) with respect to \( x \) is \( \frac{\sqrt{64x^2-1}}{64} + C \), where \( C \) is an arbitrary constant.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To evaluate the integral \( \int \frac{x \, dx}{\sqrt{64 x^{2}-1}} \), we can use the substitution method. Let \( u = 64x^2 - 1 \). Then, we have \( du = 128x \, dx \) or \( dx = \frac{du}{128x} \). Now, we need to express \( x \) in terms of \( u \): From our substitution: \[ x^2 = \frac{u + 1}{64} \implies x = \frac{\sqrt{u + 1}}{8}. \] Next, substitute everything back into the integral. The integral becomes: \[ \int \frac{x \, dx}{\sqrt{u}} = \int \frac{\frac{\sqrt{u + 1}}{8} \cdot \frac{du}{128x}}{\sqrt{u}}. \] The \( x \) in the denominator simplifies with our expression for \( x \), and thus the integral can be transformed back into a more workable form. However, an easier approach might be direct from a standard integral that resembles our structure. Using the fact that: \[ \int \frac{x \, dx}{\sqrt{64x^2 - 1}} = \frac{1}{64} \sqrt{64x^2 - 1} + C. \] So the final answer is: \[ \frac{1}{64} \sqrt{64x^2 - 1} + C. \]

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy