Find the derivative of the function. \[ G(x)=\sqrt{1-49 x^{2}} \arccos (7 x) \] \( G^{\prime}(x)=\square \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To find the derivative of the function \( G(x) = \sqrt{1 - 49 x^2} \arccos(7x) \), we’ll use the product rule, which states that \( (uv)' = u'v + uv' \). Let \( u = \sqrt{1 - 49 x^2} \) and \( v = \arccos(7x) \). First, we compute the derivatives: 1. For \( u \): \[ u' = \frac{d}{dx} \left( \sqrt{1 - 49 x^2} \right) = \frac{1}{2\sqrt{1 - 49 x^2}} \cdot (-98 x) = \frac{-49 x}{\sqrt{1 - 49 x^2}} \] 2. For \( v \): \[ v' = \frac{d}{dx} \left( \arccos(7x) \right) = -\frac{7}{\sqrt{1 - (7x)^2}} = -\frac{7}{\sqrt{1 - 49 x^2}} \] Now we can apply the product rule: \[ G'(x) = u'v + uv' = \left( \frac{-49 x}{\sqrt{1 - 49 x^2}} \right) \arccos(7x) + \sqrt{1 - 49 x^2} \left( -\frac{7}{\sqrt{1 - 49 x^2}} \right) \] Simplifying this, we get: \[ G'(x) = -\frac{49 x \arccos(7x)}{\sqrt{1 - 49 x^2}} - 7 \] Finally, the derivative \( G'(x) \) is: \[ G'(x) = -\frac{49 x \arccos(7x)}{\sqrt{1 - 49 x^2}} - 7 \]