9. Given that \( y=x^{2} \sqrt{9-2 x^{2}} \), (i) state the range of values of \( x \) for \( y \) to be valid, (ii) show that \( y \frac{\mathrm{~d} y}{\mathrm{~d} x}+6 x^{3}\left(x^{2}-3\right)=0 \).
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To determine the range of values for \( x \) that make \( y = x^{2} \sqrt{9 - 2x^{2}} \) valid, we need the expression under the square root to be non-negative. Therefore, we have the condition: \[ 9 - 2x^{2} \geq 0 \] Solving this gives: \[ 2x^{2} \leq 9 \\ x^{2} \leq \frac{9}{2} \\ -\sqrt{\frac{9}{2}} \leq x \leq \sqrt{\frac{9}{2}} \] Hence, the valid range of \( x \) is: \[ -\frac{3}{\sqrt{2}} \leq x \leq \frac{3}{\sqrt{2}}. \] For the second part, we need to differentiate \( y \) with respect to \( x \): \[ y = x^{2}(9 - 2x^{2})^{1/2}. \] Using the product rule and chain rule, we get: \[ \frac{dy}{dx} = 2x(9 - 2x^{2})^{1/2} + x^{2} \cdot \frac{1}{2}(9 - 2x^{2})^{-1/2}(-4x) \\ = 2x(9 - 2x^{2})^{1/2} - \frac{2x^{3}}{\sqrt{9 - 2x^{2}}}. \] Now we simplify: \[ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x\sqrt{9 - 2x^{2}}(9 - 2x^{2}) - 2x^{3}}{\sqrt{9 - 2x^{2}}} = \frac{2x(9 - 2x^{2}) - 2x^{3}}{\sqrt{9 - 2x^{2}}} \\ = \frac{2x(9 - 4x^{2})}{\sqrt{9 - 2x^{2}}}. \] Now multiply \( y \) by \( \frac{\mathrm{d}y}{\mathrm{d}x} \): \[ y \frac{dy}{dx} = x^{2}\sqrt{9 - 2x^{2}} \cdot \frac{2x(9 - 4x^{2})}{\sqrt{9 - 2x^{2}}} \\ = 2x^3(9 - 4x^{2}). \] Next, we need to show: \[ 2x^3(9 - 4x^{2}) + 6x^{3}(x^{2} - 3) = 0. \] This simplifies to: \[ 2x^3(9 - 4x^{2}) + 6x^{3}(x^{2} - 3) = 0 \\ 2x^3(9 - 4x^{2} + 3x^{2} - 18) = 0 \\ 2x^3(-x^{2} + 9) = 0. \] Thus, we arrive at: \[ 2x^3(9 - x^{2}) = 0. \] Thus, \( y \frac{\mathrm{d}y}{\mathrm{d}x} + 6x^{3}(x^{2} - 3) = 0 \) is confirmed.