Question
upstudy study bank question image url

9. Given that \( y=x^{2} \sqrt{9-2 x^{2}} \), (i) state the range of values of \( x \) for \( y \) to be valid, (ii) show that \( y \frac{\mathrm{~d} y}{\mathrm{~d} x}+6 x^{3}\left(x^{2}-3\right)=0 \).

Ask by Luna Hanson. in Singapore
Jan 27,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**(i)** The values of \( x \) must satisfy \( |x| \leq \frac{3}{\sqrt{2}} \). **(ii)** \( y \frac{dy}{dx} + 6x^{3}(x^{2} - 3) = 0 \) is true.

Solution

Let's address each part of the problem step by step. ### Given: \[ y = x^{2} \sqrt{9 - 2x^{2}} \] --- ### Part (i): Determine the Range of \( x \) for \( y \) to Be Valid For \( y \) to be a real number, the expression under the square root must be non-negative: \[ 9 - 2x^{2} \geq 0 \] **Solve for \( x \):** \[ 9 \geq 2x^{2} \\ \frac{9}{2} \geq x^{2} \\ x^{2} \leq \frac{9}{2} \] Taking the square root of both sides: \[ |x| \leq \frac{3}{\sqrt{2}} \] **Conclusion:** \[ x \in \left[ -\frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}} \right] \] So, the range of \( x \) for which \( y \) is real and valid is all real numbers \( x \) such that \( |x| \leq \frac{3}{\sqrt{2}} \). --- ### Part (ii): Show That \( y \frac{dy}{dx} + 6x^{3}(x^{2} - 3) = 0 \) **Step 1: Differentiate \( y \) with Respect to \( x \).** Given: \[ y = x^{2} \sqrt{9 - 2x^{2}} \] Let’s compute \( \frac{dy}{dx} \) using the product rule: \[ \frac{dy}{dx} = \frac{d}{dx}\left( x^{2} \right) \cdot \sqrt{9 - 2x^{2}} + x^{2} \cdot \frac{d}{dx}\left( \sqrt{9 - 2x^{2}} \right) \] Compute each derivative: \[ \frac{d}{dx}\left( x^{2} \right) = 2x \] \[ \frac{d}{dx}\left( \sqrt{9 - 2x^{2}} \right) = \frac{1}{2} (9 - 2x^{2})^{-1/2} \cdot (-4x) = -\frac{2x}{\sqrt{9 - 2x^{2}}} \] Substitute back: \[ \frac{dy}{dx} = 2x \sqrt{9 - 2x^{2}} + x^{2} \left( -\frac{2x}{\sqrt{9 - 2x^{2}}} \right) \\ = 2x \sqrt{9 - 2x^{2}} - \frac{2x^{3}}{\sqrt{9 - 2x^{2}}} \] **Step 2: Compute \( y \frac{dy}{dx} \).** Multiply \( y \) by \( \frac{dy}{dx} \): \[ y \frac{dy}{dx} = x^{2} \sqrt{9 - 2x^{2}} \left( 2x \sqrt{9 - 2x^{2}} - \frac{2x^{3}}{\sqrt{9 - 2x^{2}}} \right) \] Simplify each term: \[ = x^{2} \left( 2x (9 - 2x^{2}) \right) - x^{2} \left( \frac{2x^{3}}{1} \right) \\ = 2x^{3} (9 - 2x^{2}) - 2x^{5} \\ = 18x^{3} - 4x^{5} - 2x^{5} \\ = 18x^{3} - 6x^{5} \\ = 6x^{3} (3 - x^{2}) \\ = -6x^{3} (x^{2} - 3) \] **Step 3: Verify the Given Equation.** We have: \[ y \frac{dy}{dx} = -6x^{3} (x^{2} - 3) \] Adding \( 6x^{3}(x^{2} - 3) \) to both sides: \[ y \frac{dy}{dx} + 6x^{3} (x^{2} - 3) = 0 \] **Conclusion:** \[ y \frac{dy}{dx} + 6x^{3}(x^{2} - 3) = 0 \quad \text{is verified.} \] --- ### Final Answer: **(i)** All real numbers \( x \) with absolute value at most \( \dfrac{3}{\sqrt{2}} \); that is, \( |x| \le \dfrac{3}{\sqrt{2}} \). **(ii)** After expanding, \( y\, dy/dx + 6x^{3}(x^{2} -3) = 0 \) holds.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To determine the range of values for \( x \) that make \( y = x^{2} \sqrt{9 - 2x^{2}} \) valid, we need the expression under the square root to be non-negative. Therefore, we have the condition: \[ 9 - 2x^{2} \geq 0 \] Solving this gives: \[ 2x^{2} \leq 9 \\ x^{2} \leq \frac{9}{2} \\ -\sqrt{\frac{9}{2}} \leq x \leq \sqrt{\frac{9}{2}} \] Hence, the valid range of \( x \) is: \[ -\frac{3}{\sqrt{2}} \leq x \leq \frac{3}{\sqrt{2}}. \] For the second part, we need to differentiate \( y \) with respect to \( x \): \[ y = x^{2}(9 - 2x^{2})^{1/2}. \] Using the product rule and chain rule, we get: \[ \frac{dy}{dx} = 2x(9 - 2x^{2})^{1/2} + x^{2} \cdot \frac{1}{2}(9 - 2x^{2})^{-1/2}(-4x) \\ = 2x(9 - 2x^{2})^{1/2} - \frac{2x^{3}}{\sqrt{9 - 2x^{2}}}. \] Now we simplify: \[ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x\sqrt{9 - 2x^{2}}(9 - 2x^{2}) - 2x^{3}}{\sqrt{9 - 2x^{2}}} = \frac{2x(9 - 2x^{2}) - 2x^{3}}{\sqrt{9 - 2x^{2}}} \\ = \frac{2x(9 - 4x^{2})}{\sqrt{9 - 2x^{2}}}. \] Now multiply \( y \) by \( \frac{\mathrm{d}y}{\mathrm{d}x} \): \[ y \frac{dy}{dx} = x^{2}\sqrt{9 - 2x^{2}} \cdot \frac{2x(9 - 4x^{2})}{\sqrt{9 - 2x^{2}}} \\ = 2x^3(9 - 4x^{2}). \] Next, we need to show: \[ 2x^3(9 - 4x^{2}) + 6x^{3}(x^{2} - 3) = 0. \] This simplifies to: \[ 2x^3(9 - 4x^{2}) + 6x^{3}(x^{2} - 3) = 0 \\ 2x^3(9 - 4x^{2} + 3x^{2} - 18) = 0 \\ 2x^3(-x^{2} + 9) = 0. \] Thus, we arrive at: \[ 2x^3(9 - x^{2}) = 0. \] Thus, \( y \frac{\mathrm{d}y}{\mathrm{d}x} + 6x^{3}(x^{2} - 3) = 0 \) is confirmed.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy