Question
upstudy study bank question image url

7) \( \lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+x}}{x} \)

Ask by Franklin Johnson. in Israel
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \lim_{x \rightarrow -\infty} \frac{\sqrt{x^{2} + x}}{x} = -1 \]

Solution

כדי למצוא את הגבול: \[ \lim_{x \rightarrow -\infty} \frac{\sqrt{x^{2} + x}}{x} \] נבצע את הצעדים הבאים: 1. נפרק את הביטוי בתוך השורש: \[ \sqrt{x^{2} + x} = \sqrt{x^{2}\left(1 + \frac{1}{x}\right)} = |x|\sqrt{1 + \frac{1}{x}} \] מאחר ו-\( x \) שואף ל-\(-\infty\), הערך המוחלט של \( x \) הוא \( -x \). לכן: \[ \sqrt{x^{2} + x} = -x \sqrt{1 + \frac{1}{x}} \] 2. נחלק את הביטוי המקורי ב-\( x \): \[ \frac{\sqrt{x^{2} + x}}{x} = \frac{-x \sqrt{1 + \frac{1}{x}}}{x} = -\sqrt{1 + \frac{1}{x}} \] 3. כעת, נחשב את הגבול כאשר \( x \) שואף ל-\(-\infty\): \[ \lim_{x \rightarrow -\infty} -\sqrt{1 + \frac{1}{x}} = -\sqrt{1 + 0} = -1 \] לכן: \[ \lim_{x \rightarrow -\infty} \frac{\sqrt{x^{2} + x}}{x} = -1 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To evaluate the limit \( \lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+x}}{x} \), we can start by simplifying the expression under the square root: \[ \sqrt{x^{2} + x} = \sqrt{x^{2}(1 + \frac{1}{x})} = |x|\sqrt{1 + \frac{1}{x}} \] As \( x \) approaches \( -\infty \), \( |x| = -x \). Thus, we have: \[ \sqrt{x^{2} + x} = -x \sqrt{1 + \frac{1}{x}} \] Now, substituting this back into our limit, we get: \[ \lim _{x \rightarrow -\infty} \frac{\sqrt{x^{2} + x}}{x} = \lim _{x \rightarrow -\infty} \frac{-x \sqrt{1 + \frac{1}{x}}}{x} \] This simplifies to: \[ \lim _{x \rightarrow -\infty} -\sqrt{1 + \frac{1}{x}} \] As \( x \rightarrow -\infty\), \( \frac{1}{x} \) approaches \( 0 \), so: \[ -\sqrt{1 + 0} = -1 \] Thus, the limit is: \[ \boxed{-1} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy