Question
upstudy study bank question image url

10) \( 8-(3 z-4)^{1 / 3}=12 \)

Ask by Boone Greene. in Argentina
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( z = -20 \)

Solution

Para resolver la ecuación \( 8 - (3z - 4)^{1/3} = 12 \), sigue estos pasos: 1. **Aislar el término con la raíz cúbica:** \[ 8 - (3z - 4)^{1/3} = 12 \] Restamos 8 de ambos lados: \[ -(3z - 4)^{1/3} = 12 - 8 \] \[ -(3z - 4)^{1/3} = 4 \] 2. **Eliminar el signo negativo:** Multiplicamos ambos lados por -1 para deshacernos del signo negativo: \[ (3z - 4)^{1/3} = -4 \] 3. **Elevar al cubo para eliminar la raíz cúbica:** \[ \left( (3z - 4)^{1/3} \right)^3 = (-4)^3 \] \[ 3z - 4 = -64 \] 4. **Resolver para \( z \):** Sumamos 4 a ambos lados: \[ 3z = -64 + 4 \] \[ 3z = -60 \] Dividimos entre 3: \[ z = \frac{-60}{3} \] \[ z = -20 \] **Respuesta final:** \( z = -20 \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To solve \( 8-(3 z-4)^{1 / 3}=12 \), we can start by isolating the cube root term. First, subtract 8 from both sides: \[ -(3z-4)^{1/3} = 12 - 8 \] \[ -(3z-4)^{1/3} = 4 \] Now, multiply both sides by -1: \[ (3z-4)^{1/3} = -4 \] Next, we will cube both sides to eliminate the cube root: \[ 3z - 4 = (-4)^3 \] \[ 3z - 4 = -64 \] Now, add 4 to both sides: \[ 3z = -64 + 4 \] \[ 3z = -60 \] Finally, divide by 3: \[ z = -20 \] So, the solution is \( z = -20 \).

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy