Find the exact value of the expression. \( \tan \left[\sin ^{-1}\left(\frac{4}{9}\right)\right] \) Select the correct choice and fill in any answer boxes in your choice below. A. \( \tan \left[\sin ^{-1}\left(\frac{4}{9}\right)\right]=\square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) B. There is no solution.
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To solve for \( \tan \left[\sin ^{-1}\left(\frac{4}{9}\right)\right] \), we can set \( \theta = \sin^{-1}\left(\frac{4}{9}\right) \). This means that \( \sin(\theta) = \frac{4}{9} \). Using the Pythagorean identity, we can find \( \cos(\theta) \): \[ \cos(\theta) = \sqrt{1 - \sin^2(\theta)} = \sqrt{1 - \left(\frac{4}{9}\right)^2} = \sqrt{1 - \frac{16}{81}} = \sqrt{\frac{65}{81}} = \frac{\sqrt{65}}{9}. \] Now we can find \( \tan(\theta) \): \[ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{\frac{4}{9}}{\frac{\sqrt{65}}{9}} = \frac{4}{\sqrt{65}}. \] Thus, the exact value of the expression is: \[ \tan \left[\sin ^{-1}\left(\frac{4}{9}\right)\right] = \frac{4}{\sqrt{65}}. \] To simplify further, we can rationalize the denominator: \[ \tan \left[\sin ^{-1}\left(\frac{4}{9}\right)\right] = \frac{4}{\sqrt{65}} \cdot \frac{\sqrt{65}}{\sqrt{65}} = \frac{4\sqrt{65}}{65}. \] So the answer is: A. \( \tan \left[\sin ^{-1}\left(\frac{4}{9}\right)\right]=\frac{4\sqrt{65}}{65} \)