Question
upstudy study bank question image url

Find the exact value of the expression. \( \tan \left[\sin ^{-1}\left(\frac{4}{9}\right)\right] \) Select the correct choice and fill in any answer boxes in your choice below. A. \( \tan \left[\sin ^{-1}\left(\frac{4}{9}\right)\right]=\square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) B. There is no solution.

Ask by Valdez Harris. in the United States
Jan 19,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( \tan \left[\sin^{-1}\left(\frac{4}{9}\right)\right] = \frac{4\sqrt{65}}{65} \)

Solution

To find the exact value of \( \tan \left[\sin^{-1}\left(\frac{4}{9}\right)\right] \), let's follow these steps: 1. **Let \( \theta = \sin^{-1}\left(\frac{4}{9}\right) \).** - This means \( \sin(\theta) = \frac{4}{9} \). 2. **Use the Pythagorean identity to find \( \cos(\theta) \).** \[ \cos(\theta) = \sqrt{1 - \sin^2(\theta)} = \sqrt{1 - \left(\frac{4}{9}\right)^2} = \sqrt{1 - \frac{16}{81}} = \sqrt{\frac{65}{81}} = \frac{\sqrt{65}}{9} \] 3. **Calculate \( \tan(\theta) \).** \[ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{\frac{4}{9}}{\frac{\sqrt{65}}{9}} = \frac{4}{\sqrt{65}} \] 4. **Rationalize the denominator.** \[ \frac{4}{\sqrt{65}} \times \frac{\sqrt{65}}{\sqrt{65}} = \frac{4\sqrt{65}}{65} \] So, the exact value is: \[ \tan \left[\sin^{-1}\left(\frac{4}{9}\right)\right] = \frac{4\sqrt{65}}{65} \] **Answer:** **A.** \( \tan \left[\sin ^{-1}\left(\frac{4}{9}\right)\right]=\dfrac{4\,\sqrt{65}}{65} \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To solve for \( \tan \left[\sin ^{-1}\left(\frac{4}{9}\right)\right] \), we can set \( \theta = \sin^{-1}\left(\frac{4}{9}\right) \). This means that \( \sin(\theta) = \frac{4}{9} \). Using the Pythagorean identity, we can find \( \cos(\theta) \): \[ \cos(\theta) = \sqrt{1 - \sin^2(\theta)} = \sqrt{1 - \left(\frac{4}{9}\right)^2} = \sqrt{1 - \frac{16}{81}} = \sqrt{\frac{65}{81}} = \frac{\sqrt{65}}{9}. \] Now we can find \( \tan(\theta) \): \[ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{\frac{4}{9}}{\frac{\sqrt{65}}{9}} = \frac{4}{\sqrt{65}}. \] Thus, the exact value of the expression is: \[ \tan \left[\sin ^{-1}\left(\frac{4}{9}\right)\right] = \frac{4}{\sqrt{65}}. \] To simplify further, we can rationalize the denominator: \[ \tan \left[\sin ^{-1}\left(\frac{4}{9}\right)\right] = \frac{4}{\sqrt{65}} \cdot \frac{\sqrt{65}}{\sqrt{65}} = \frac{4\sqrt{65}}{65}. \] So the answer is: A. \( \tan \left[\sin ^{-1}\left(\frac{4}{9}\right)\right]=\frac{4\sqrt{65}}{65} \)

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy