Find the exact value of each of the following under the given conditions. \( \sin \alpha=\frac{7}{25}, 0<\alpha<\frac{\pi}{2} ; \cos \beta=\frac{8 \sqrt{89}}{89},-\frac{\pi}{2}<\beta<0 \) \( \begin{array}{llll}\text { (a) } \sin (\alpha+\beta) & \text { (b) } \cos (\alpha+\beta) & \text { (c) } \sin (\alpha-\beta) & \text { (d) } \tan (\alpha-\beta)\end{array} \) \( \begin{array}{l}\text { (a) } \sin (\alpha+\beta)=\square \\ \text { (Type an exact answer using radicals as needed. Rationalize all denominators. Use integers or fractions for any numbers in the expression. Simplify your answer.) }\end{array} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To find the requested values, we first need to determine the cosine of angle \( \alpha \) and the sine of angle \( \beta \). ### Step 1: Find \( \cos \alpha \) Given \( \sin \alpha = \frac{7}{25} \): \[ \cos^2 \alpha = 1 - \sin^2 \alpha = 1 - \left(\frac{7}{25}\right)^2 = 1 - \frac{49}{625} = \frac{576}{625} \] Thus, \[ \cos \alpha = \sqrt{\frac{576}{625}} = \frac{24}{25} \] ### Step 2: Find \( \sin \beta \) Given \( \cos \beta = \frac{8 \sqrt{89}}{89} \) (and since \( \beta \) is in the fourth quadrant, sine is negative): \[ \sin^2 \beta + \cos^2 \beta = 1 \implies \sin^2 \beta = 1 - \left(\frac{8\sqrt{89}}{89}\right)^2 \] Calculating \( \left(\frac{8\sqrt{89}}{89}\right)^2 \): \[ = \frac{64 \cdot 89}{7921} = \frac{5696}{7921} \] So, \[ \sin^2 \beta = 1 - \frac{5696}{7921} = \frac{7921 - 5696}{7921} = \frac{3225}{7921} \] Thus, \[ \sin \beta = -\sqrt{\frac{3225}{7921}} = -\frac{\sqrt{3225}}{89} \] We can simplify \( \sqrt{3225} \) as: \[ \sqrt{3225} = \sqrt{25 \cdot 129} = 5\sqrt{129} \] So, \[ \sin \beta = -\frac{5\sqrt{129}}{89} \] ### Step 3: Calculate \( \sin(\alpha + \beta) \) Using the sine addition formula: \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] Substituting in our known values: \[ \sin(\alpha + \beta) = \left(\frac{7}{25} \cdot \frac{8\sqrt{89}}{89}\right) + \left(\frac{24}{25} \cdot -\frac{5\sqrt{129}}{89}\right) \] Calculating each term: \[ = \frac{56\sqrt{89}}{2225} - \frac{120\sqrt{129}}{2225} \] Combining gives: \[ \sin(\alpha + \beta) = \frac{56\sqrt{89} - 120\sqrt{129}}{2225} \] ### Answers: \[ \text{(a) } \sin (\alpha + \beta) = \frac{56\sqrt{89} - 120\sqrt{129}}{2225} \] To find the remaining values: ### Step 4: Calculate \( \cos(\alpha + \beta) \) Using the cosine addition formula: \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] Substituting in known values: \[ \cos(\alpha + \beta) = \left(\frac{24}{25} \cdot \frac{8\sqrt{89}}{89}\right) - \left(\frac{7}{25} \cdot -\frac{5\sqrt{129}}{89}\right) \] Calculating: \[ = \frac{192\sqrt{89}}{2225} + \frac{35\sqrt{129}}{2225} \] So: \[ \cos(\alpha + \beta) = \frac{192\sqrt{89} + 35\sqrt{129}}{2225} \] ### Step 5: Calculate \( \sin(\alpha - \beta) \) Using the sine subtraction formula: \[ \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \] Substituting gives: \[ \sin(\alpha - \beta) = \left(\frac{7}{25} \cdot \frac{8\sqrt{89}}{89}\right) - \left