Question
upstudy study bank question image url

Find the exact value of each of the following under the given conditions. \( \sin \alpha=\frac{7}{25}, 0<\alpha<\frac{\pi}{2} ; \cos \beta=\frac{8 \sqrt{89}}{89},-\frac{\pi}{2}<\beta<0 \) \( \begin{array}{llll}\text { (a) } \sin (\alpha+\beta) & \text { (b) } \cos (\alpha+\beta) & \text { (c) } \sin (\alpha-\beta) & \text { (d) } \tan (\alpha-\beta)\end{array} \) \( \begin{array}{l}\text { (a) } \sin (\alpha+\beta)=\square \\ \text { (Type an exact answer using radicals as needed. Rationalize all denominators. Use integers or fractions for any numbers in the expression. Simplify your answer.) }\end{array} \)

Ask by Herrera Simpson. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\(\sin(\alpha + \beta) = -\frac{64\sqrt{89}}{2225}\)

Solution

To find \(\sin(\alpha + \beta)\) given: - \(\sin \alpha = \frac{7}{25}\) with \(0 < \alpha < \frac{\pi}{2}\), and - \(\cos \beta = \frac{8\sqrt{89}}{89}\) with \(-\frac{\pi}{2} < \beta < 0\), we can use the sine addition formula: \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] **Step 1: Find \(\cos \alpha\)** \[ \sin^2 \alpha + \cos^2 \alpha = 1 \\ \left(\frac{7}{25}\right)^2 + \cos^2 \alpha = 1 \\ \frac{49}{625} + \cos^2 \alpha = 1 \\ \cos^2 \alpha = 1 - \frac{49}{625} = \frac{576}{625} \\ \cos \alpha = \frac{24}{25} \quad (\text{since } \alpha \text{ is in the first quadrant}) \] **Step 2: Find \(\sin \beta\)** \[ \cos^2 \beta + \sin^2 \beta = 1 \\ \left(\frac{8\sqrt{89}}{89}\right)^2 + \sin^2 \beta = 1 \\ \frac{64 \times 89}{89^2} + \sin^2 \beta = 1 \\ \frac{64}{89} + \sin^2 \beta = 1 \\ \sin^2 \beta = 1 - \frac{64}{89} = \frac{25}{89} \\ \sin \beta = -\frac{5}{\sqrt{89}} = -\frac{5\sqrt{89}}{89} \quad (\text{since } \beta \text{ is in the fourth quadrant}) \] **Step 3: Apply the sine addition formula** \[ \sin(\alpha + \beta) = \left(\frac{7}{25}\right)\left(\frac{8\sqrt{89}}{89}\right) + \left(\frac{24}{25}\right)\left(-\frac{5\sqrt{89}}{89}\right) \\ = \frac{56\sqrt{89}}{2225} - \frac{120\sqrt{89}}{2225} \\ = \frac{-64\sqrt{89}}{2225} \] **Final Answer:** \[ \sin(\alpha + \beta) = -\frac{64\, \sqrt{89}}{2225} \] Answer: \(\sin(\alpha + \beta) = -\,\dfrac{64\,\sqrt{89}}{2225}\)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To find the requested values, we first need to determine the cosine of angle \( \alpha \) and the sine of angle \( \beta \). ### Step 1: Find \( \cos \alpha \) Given \( \sin \alpha = \frac{7}{25} \): \[ \cos^2 \alpha = 1 - \sin^2 \alpha = 1 - \left(\frac{7}{25}\right)^2 = 1 - \frac{49}{625} = \frac{576}{625} \] Thus, \[ \cos \alpha = \sqrt{\frac{576}{625}} = \frac{24}{25} \] ### Step 2: Find \( \sin \beta \) Given \( \cos \beta = \frac{8 \sqrt{89}}{89} \) (and since \( \beta \) is in the fourth quadrant, sine is negative): \[ \sin^2 \beta + \cos^2 \beta = 1 \implies \sin^2 \beta = 1 - \left(\frac{8\sqrt{89}}{89}\right)^2 \] Calculating \( \left(\frac{8\sqrt{89}}{89}\right)^2 \): \[ = \frac{64 \cdot 89}{7921} = \frac{5696}{7921} \] So, \[ \sin^2 \beta = 1 - \frac{5696}{7921} = \frac{7921 - 5696}{7921} = \frac{3225}{7921} \] Thus, \[ \sin \beta = -\sqrt{\frac{3225}{7921}} = -\frac{\sqrt{3225}}{89} \] We can simplify \( \sqrt{3225} \) as: \[ \sqrt{3225} = \sqrt{25 \cdot 129} = 5\sqrt{129} \] So, \[ \sin \beta = -\frac{5\sqrt{129}}{89} \] ### Step 3: Calculate \( \sin(\alpha + \beta) \) Using the sine addition formula: \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] Substituting in our known values: \[ \sin(\alpha + \beta) = \left(\frac{7}{25} \cdot \frac{8\sqrt{89}}{89}\right) + \left(\frac{24}{25} \cdot -\frac{5\sqrt{129}}{89}\right) \] Calculating each term: \[ = \frac{56\sqrt{89}}{2225} - \frac{120\sqrt{129}}{2225} \] Combining gives: \[ \sin(\alpha + \beta) = \frac{56\sqrt{89} - 120\sqrt{129}}{2225} \] ### Answers: \[ \text{(a) } \sin (\alpha + \beta) = \frac{56\sqrt{89} - 120\sqrt{129}}{2225} \] To find the remaining values: ### Step 4: Calculate \( \cos(\alpha + \beta) \) Using the cosine addition formula: \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] Substituting in known values: \[ \cos(\alpha + \beta) = \left(\frac{24}{25} \cdot \frac{8\sqrt{89}}{89}\right) - \left(\frac{7}{25} \cdot -\frac{5\sqrt{129}}{89}\right) \] Calculating: \[ = \frac{192\sqrt{89}}{2225} + \frac{35\sqrt{129}}{2225} \] So: \[ \cos(\alpha + \beta) = \frac{192\sqrt{89} + 35\sqrt{129}}{2225} \] ### Step 5: Calculate \( \sin(\alpha - \beta) \) Using the sine subtraction formula: \[ \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \] Substituting gives: \[ \sin(\alpha - \beta) = \left(\frac{7}{25} \cdot \frac{8\sqrt{89}}{89}\right) - \left

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy