Question
upstudy study bank question image url

883. Прсобразуйте в многочлен: \( \begin{array}{lll}\text { a) }\left(4 m^{2}+5 n\right)^{2} ; & \text { в) }\left(2 x^{2}+5 y^{2}\right)^{2} ; & \text { д) }\left(\frac{1}{4} x^{2}-4 y^{3}\right)^{2} \\ \text { б) }\left(3 c-2 p^{3}\right)^{2} ; & \text { г) }\left(7 y^{3}-3 p^{2}\right)^{2} ; & \text { е) }\left(\frac{2}{5} a^{4}+\frac{1}{2} a^{3}\right)^{2}\end{array} \)

Ask by Guzman Bush. in Russia
Dec 24,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

Преобразуем каждое выражение в многочлен: **a)** \(16m^{4} + 40m^{2}n + 25n^{2}\) **б)** \(9c^{2} - 12cp^{3} + 4p^{6}\) **в)** \(4x^{4} + 20x^{2}y^{2} + 25y^{4}\) **г)** \(49y^{6} - 42y^{3}p^{2} + 9p^{4}\) **д)** \(\frac{1}{16}x^{4} - 2x^{2}y^{3} + 16y^{6}\) **е)** \(\frac{4}{25}a^{8} + \frac{2}{5}a^{7} + \frac{1}{4}a^{6}\) Каждое выражение теперь представлено в виде многочлена.

Solution

Преобразуем каждое выражение в многочлен, раскрывая квадрат бинома по формуле \((A \pm B)^2 = A^2 \pm 2AB + B^2\). --- **a) \(\left(4m^{2} + 5n\right)^{2}\)** \[ \begin{align*} (4m^{2} + 5n)^2 &= (4m^{2})^2 + 2 \cdot 4m^{2} \cdot 5n + (5n)^2 \\ &= 16m^{4} + 40m^{2}n + 25n^{2} \end{align*} \] --- **б) \(\left(3c - 2p^{3}\right)^{2}\)** \[ \begin{align*} (3c - 2p^{3})^2 &= (3c)^2 - 2 \cdot 3c \cdot 2p^{3} + (2p^{3})^2 \\ &= 9c^{2} - 12cp^{3} + 4p^{6} \end{align*} \] --- **в) \(\left(2x^{2} + 5y^{2}\right)^{2}\)** \[ \begin{align*} (2x^{2} + 5y^{2})^2 &= (2x^{2})^2 + 2 \cdot 2x^{2} \cdot 5y^{2} + (5y^{2})^2 \\ &= 4x^{4} + 20x^{2}y^{2} + 25y^{4} \end{align*} \] --- **г) \(\left(7y^{3} - 3p^{2}\right)^{2}\)** \[ \begin{align*} (7y^{3} - 3p^{2})^2 &= (7y^{3})^2 - 2 \cdot 7y^{3} \cdot 3p^{2} + (3p^{2})^2 \\ &= 49y^{6} - 42y^{3}p^{2} + 9p^{4} \end{align*} \] --- **д) \(\left(\frac{1}{4}x^{2} - 4y^{3}\right)^{2}\)** \[ \begin{align*} \left(\frac{1}{4}x^{2} - 4y^{3}\right)^2 &= \left(\frac{1}{4}x^{2}\right)^2 - 2 \cdot \frac{1}{4}x^{2} \cdot 4y^{3} + (4y^{3})^2 \\ &= \frac{1}{16}x^{4} - 2x^{2}y^{3} + 16y^{6} \end{align*} \] --- **е) \(\left(\frac{2}{5}a^{4} + \frac{1}{2}a^{3}\right)^{2}\)** \[ \begin{align*} \left(\frac{2}{5}a^{4} + \frac{1}{2}a^{3}\right)^2 &= \left(\frac{2}{5}a^{4}\right)^2 + 2 \cdot \frac{2}{5}a^{4} \cdot \frac{1}{2}a^{3} + \left(\frac{1}{2}a^{3}\right)^2 \\ &= \frac{4}{25}a^{8} + \frac{2}{5}a^{7} + \frac{1}{4}a^{6} \end{align*} \] --- Каждое выражение раскрыто и приведено в виде многочлена.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

Чтобы преобразовать выражения в многочлены, воспользуемся формулой для квадрат суммы: \((a + b)^2 = a^2 + 2ab + b^2\). Для первого выражения, \( (4 m^{2}+5 n)^{2} \): \[ (4m^2)^2 + 2(4m^2)(5n) + (5n)^2 = 16m^4 + 40m^2n + 25n^2. \] Следующее, \( (2 x^{2}+5 y^{2})^{2} \): \[ (2x^2)^2 + 2(2x^2)(5y^2) + (5y^2)^2 = 4x^4 + 20x^2y^2 + 25y^4. \] Теперь, \( \left(3 c-2 p^{3}\right)^{2} \): \[ (3c)^2 - 2(3c)(2p^3) + (2p^3)^2 = 9c^2 - 12cp^3 + 4p^6. \] Идём дальше, \( \left(7 y^{3}-3 p^{2}\right)^{2} \): \[ (7y^3)^2 - 2(7y^3)(3p^2) + (3p^2)^2 = 49y^6 - 42y^3p^2 + 9p^4. \] Следующее, \( \left(\frac{1}{4} x^{2}-4 y^{3}\right)^{2} \): \[ \left(\frac{1}{4}x^2\right)^2 - 2\left(\frac{1}{4}x^2\right)(4y^3) + (4y^3)^2 = \frac{1}{16}x^4 - 2xy^3 + 16y^6. \] И наконец, \( \left(\frac{2}{5} a^{4}+\frac{1}{2} a^{3}\right)^{2} \): \[ \left(\frac{2}{5}a^4\right)^2 + 2\left(\frac{2}{5}a^4\right)\left(\frac{1}{2}a^3\right) + \left(\frac{1}{2}a^3\right)^2 = \frac{4}{25}a^8 + \frac{2}{5}a^7 + \frac{1}{4}a^6. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy