Determine \( \mathbf{u} \cdot(\mathbf{v}+\mathbf{w}) \) if \( \mathbf{u}=\langle 3,-1\rangle, \mathbf{w}=\langle-2,4\rangle \), and \( \mathbf{u} \cdot \mathbf{v}=-5 \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To find \( \mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) \), we can use the distributive property of the dot product: \[ \mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w} \] Given that \( \mathbf{u} = \langle 3, -1 \rangle \) and \( \mathbf{w} = \langle -2, 4 \rangle \), we first calculate \( \mathbf{u} \cdot \mathbf{w} \): \[ \mathbf{u} \cdot \mathbf{w} = \langle 3, -1 \rangle \cdot \langle -2, 4 \rangle = (3 \times -2) + (-1 \times 4) = -6 - 4 = -10 \] We are also given that: \[ \mathbf{u} \cdot \mathbf{v} = -5 \] Now, we can substitute these values into our equation: \[ \mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w} = -5 + (-10) = -5 - 10 = -15 \] Thus, the result is: \[ \mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = -15 \]