Question
upstudy study bank question image url

Find the exact value of each of the following under the given conditions below. \[ \begin{array}{llll}\tan \alpha=-\frac{12}{5}, \frac{\pi}{2}<\alpha<\pi ; \sin \beta=\frac{\sqrt{3}}{2}, 0<\beta<\frac{\pi}{2} \\ \begin{array}{llll}\text { (a) } \sin (\alpha+\beta) & \text { (b) } \cos (\alpha+\beta) & \text { (c) } \sin (\alpha-\beta) & \text { (d) } \tan (\alpha-\beta)\end{array}\end{array} . \]

Ask by Williams Campbell. in Qatar
Dec 02,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \begin{array}{ll} \text{(a) } \sin(\alpha + \beta) = \frac{12 - 5\sqrt{3}}{26} \\ \text{(b) } \cos(\alpha + \beta) = -\frac{5 + 12\sqrt{3}}{26} \\ \text{(c) } \sin(\alpha - \beta) = \frac{12 + 5\sqrt{3}}{26} \\ \text{(d) } \tan(\alpha - \beta) = \frac{12 + 5\sqrt{3}}{12\sqrt{3} - 5} \end{array} \]

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Bonus Knowledge

To find the exact values of \(\sin(\alpha + \beta)\), \(\cos(\alpha + \beta)\), \(\sin(\alpha - \beta)\), and \(\tan(\alpha - \beta)\), we will use the given values and the angle sum and difference formulas, along with the definitions of trigonometric functions. ### Step 1: Identify values for \(\alpha\) and \(\beta\) We know: - \(\tan \alpha = -\frac{12}{5}\) and \(\frac{\pi}{2} < \alpha < \pi\). - \(\sin \beta = \frac{\sqrt{3}}{2}\) and \(0 < \beta < \frac{\pi}{2\). From \(\sin \beta = \frac{\sqrt{3}}{2}\), it follows that: \[ \beta = \frac{\pi}{3} \] ### Step 2: Determine \(\cos \alpha\) and \(\sin \alpha\) Using \(\tan \alpha = -\frac{12}{5}\), we write: \[ \sin \alpha = -12k, \quad \cos \alpha = 5k \] because \(\tan \alpha = \frac{\sin \alpha}{\cos \alpha}\). Using the Pythagorean identity: \[ \sin^2 \alpha + \cos^2 \alpha = 1 \] gives us: \[ (-12k)^2 + (5k)^2 = 1 \implies 144k^2 + 25k^2 = 1 \implies 169k^2 = 1 \implies k^2 = \frac{1}{169} \implies k = \frac{1}{13} \] Thus: \[ \sin \alpha = -\frac{12}{13}, \quad \cos \alpha = \frac{5}{13} \] ### Step 3: Calculate \(\sin(\alpha + \beta)\) Using the formula: \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] where \(\cos \beta = \frac{1}{2}\) (from \(\beta = \frac{\pi}{3}\)): \[ \sin(\alpha + \beta) = \left(-\frac{12}{13}\right) \left(\frac{1}{2}\right) + \left(\frac{5}{13}\right) \left(\frac{\sqrt{3}}{2}\right) = -\frac{6}{13} + \frac{5\sqrt{3}}{26} = -\frac{12}{26} + \frac{5\sqrt{3}}{26} = \frac{5\sqrt{3} - 12}{26} \] ### Step 4: Calculate \(\cos(\alpha + \beta)\) Using the formula: \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \]: \[ \cos(\alpha + \beta) = \left(\frac{5}{13}\right) \left(\frac{1}{2}\right) - \left(-\frac{12}{13}\right) \left(\frac{\sqrt{3}}{2}\right) = \frac{5}{26} + \frac{12\sqrt{3}}{26} = \frac{5 + 12\sqrt{3}}{26} \] ### Step 5: Calculate \(\sin(\alpha - \beta)\) Using the formula: \[ \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \]: \[ \sin(\alpha - \beta) = \left(-\frac{12}{13}\right) \left(\frac{1}{2}\right) - \left(\frac{5}{13}\right) \left(\frac{\sqrt{3}}{2}\right) = -\frac{6}{13} - \frac{5\sqrt{3}}{26} = -\frac{12}{26} - \frac{5\sqrt{3}}{26} = -\frac{12 + 5\sqrt{3}}{26} \] ### Step 6: Calculate \(\tan(\alpha - \beta)\) Using the formula: \[ \tan(\alpha - \beta) = \frac{\sin(\alpha - \beta)}{\cos(\alpha - \beta)} \] where \(\cos(\alpha

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy