Question
(1)) Complete the pattern: \( 0.08047 \div 10=\square \) \( 0.08047 \div 100=\square \) \( 0.08047 \div 1,000=\square \) \( 0.08047 \div 10,000=\square \)
Ask by Bernard Turnbull. in the United States
Jan 20,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
\[
\begin{align*}
0.08047 \div 10 &= 0.008047 \\
0.08047 \div 100 &= 0.0008047 \\
0.08047 \div 1,\!000 &= 0.00008047 \\
0.08047 \div 10,\!000 &= 0.000008047 \\
\end{align*}
\]
Solution
Sure, let's complete the pattern by dividing \( 0.08047 \) by increasing powers of 10.
\[
\begin{align*}
0.08047 \div 10 &= 0.008047 \\
0.08047 \div 100 &= 0.0008047 \\
0.08047 \div 1,\!000 &= 0.00008047 \\
0.08047 \div 10,\!000 &= 0.000008047 \\
\end{align*}
\]
**Completed Pattern:**
\[
\begin{align*}
0.08047 \div 10 &= 0.008047 \\
0.08047 \div 100 &= 0.0008047 \\
0.08047 \div 1,\!000 &= 0.00008047 \\
0.08047 \div 10,\!000 &= 0.000008047 \\
\end{align*}
\]
**Explanation:**
When you divide a decimal number by 10, each division by 10 moves the decimal point one place to the left:
- **Dividing by 10:**
\[
0.08047 \div 10 = 0.008047
\]
- **Dividing by 100:**
\[
0.08047 \div 100 = 0.0008047
\]
- **Dividing by 1,000:**
\[
0.08047 \div 1,\!000 = 0.00008047
\]
- **Dividing by 10,000:**
\[
0.08047 \div 10,\!000 = 0.000008047
\]
Each subsequent division by 10 adds another zero after the decimal point, effectively shifting the original number further to the right.
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Mind Expander
When you divide a number by 10, you shift the decimal point one place to the left. So for \( 0.08047 \div 10 \), you'll get \( 0.008047 \). Continuing with the pattern, dividing by 100 shifts the decimal two places to the left to give \( 0.0008047 \), dividing by 1,000 gives \( 0.00008047 \), and dividing by 10,000 results in \( 0.000008047 \). Thus, the completed pattern is: \( 0.08047 \div 10 = 0.008047 \), \( 0.08047 \div 100 = 0.0008047 \), \( 0.08047 \div 1,000 = 0.00008047 \), \( 0.08047 \div 10,000 = 0.000008047 \).