Question
upstudy study bank question image url

\begin{tabular}{|l|c|c|c|}\hline & Common fraction & Decimal fraction & Percentage \\ \hline a) & \( \frac{3}{8} \) & \\ \hline b) & \( \frac{125}{825} \) & \\ \hline c) & \( \frac{17}{8} \) & \\ \hline d) & \( \frac{2}{3} \) & \\ e) & \( \frac{12}{100} \) & \\ \hline f) & & 0,65 \\ g) & & 0,244 \\ h) & & 1,5 \\ i) & & 0,35\end{tabular}

Ask by Mills Herrera. in South Africa
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \begin{tabular}{|l|c|c|c|}\hline & \textbf{Common fraction} & \textbf{Decimal fraction} & \textbf{Percentage} \\ \hline \textbf{a)} & \( \dfrac{3}{8} \) & 0.375 & 37.5\% \\ \hline \textbf{b)} & \( \dfrac{125}{825} = \dfrac{5}{33} \) & \(\approx 0.1515\) & \(\approx 15.15\%\) \\ \hline \textbf{c)} & \( \dfrac{17}{8} \) & 2.125 & 212.5\% \\ \hline \textbf{d)} & \( \dfrac{2}{3} \) & \(\approx 0.6667\) & \(\approx 66.67\%\) \\ \hline \textbf{e)} & \( \dfrac{12}{100} \) & 0.12 & 12\% \\ \hline \textbf{f)} & \( \dfrac{13}{20} \) & 0.65 & 65\% \\ \hline \textbf{g)} & \( \dfrac{61}{250} \) & 0.244 & 24.4\% \\ \hline \textbf{h)} & \( \dfrac{3}{2} \) & 1.5 & 150\% \\ \hline \textbf{i)} & \( \dfrac{7}{20} \) & 0.35 & 35\% \\ \hline \end{tabular} \]

Solution

Certainly! Here's the completed table with the missing **Decimal fraction** and **Percentage** values filled in: \[ \begin{tabular}{|l|c|c|c|}\hline & \textbf{Common fraction} & \textbf{Decimal fraction} & \textbf{Percentage} \\ \hline \textbf{a)} & \( \dfrac{3}{8} \) & 0.375 & 37.5\% \\ \hline \textbf{b)} & \( \dfrac{125}{825} = \dfrac{5}{33} \) & \(\approx 0.1515\) & \(\approx 15.15\%\) \\ \hline \textbf{c)} & \( \dfrac{17}{8} \) & 2.125 & 212.5\% \\ \hline \textbf{d)} & \( \dfrac{2}{3} \) & \(\approx 0.6667\) & \(\approx 66.67\%\) \\ \hline \textbf{e)} & \( \dfrac{12}{100} \) & 0.12 & 12\% \\ \hline \textbf{f)} & \( \dfrac{13}{20} \) & 0.65 & 65\% \\ \hline \textbf{g)} & \( \dfrac{61}{250} \) & 0.244 & 24.4\% \\ \hline \textbf{h)} & \( \dfrac{3}{2} \) & 1.5 & 150\% \\ \hline \textbf{i)} & \( \dfrac{7}{20} \) & 0.35 & 35\% \\ \hline \end{tabular} \] ### Explanation of Calculations: #### a) \( \frac{3}{8} \) - **Decimal:** \( \frac{3}{8} = 0.375 \) - **Percentage:** \( 0.375 \times 100 = 37.5\% \) #### b) \( \frac{125}{825} \) - **Simplified Fraction:** \( \frac{125}{825} = \frac{5}{33} \) - **Decimal:** \( \frac{5}{33} \approx 0.1515 \) - **Percentage:** \( 0.1515 \times 100 \approx 15.15\% \) #### c) \( \frac{17}{8} \) - **Decimal:** \( \frac{17}{8} = 2.125 \) - **Percentage:** \( 2.125 \times 100 = 212.5\% \) #### d) \( \frac{2}{3} \) - **Decimal:** \( \frac{2}{3} \approx 0.6667 \) - **Percentage:** \( 0.6667 \times 100 \approx 66.67\% \) #### e) \( \frac{12}{100} \) - **Decimal:** \( \frac{12}{100} = 0.12 \) - **Percentage:** \( 0.12 \times 100 = 12\% \) #### f) **Given Decimal:** 0.65 - **Fraction:** \( 0.65 = \frac{65}{100} = \frac{13}{20} \) - **Percentage:** \( 0.65 \times 100 = 65\% \) #### g) **Given Decimal:** 0.244 - **Fraction:** \( 0.244 = \frac{244}{1000} = \frac{61}{250} \) - **Percentage:** \( 0.244 \times 100 = 24.4\% \) #### h) **Given Decimal:** 1.5 - **Fraction:** \( 1.5 = \frac{3}{2} \) - **Percentage:** \( 1.5 \times 100 = 150\% \) #### i) **Given Decimal:** 0.35 - **Fraction:** \( 0.35 = \frac{35}{100} = \frac{7}{20} \) - **Percentage:** \( 0.35 \times 100 = 35\% \) Feel free to use this table for your reference or any academic purposes!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

Let's fill in the table with the common fractions, decimal fractions, and percentages based on your provided values. Here we go! For \(a)\) \( \frac{3}{8} \), when converted to a decimal, it's 0.375. To express it as a percentage, simply multiply the decimal by 100, resulting in 37.5%. For \(b)\) \( \frac{125}{825} \), simplifying this gives \( \frac{5}{33} \). Dividing gives approximately 0.1515, and as a percentage, it's about 15.15%. For \(c)\) \( \frac{17}{8} \), this improper fraction equals 2.125 as a decimal, which is also 212.5% when converted. For \(d)\) \( \frac{2}{3} \), this equals approximately 0.6667 in decimal, which corresponds to 66.67% when multiplied by 100. For \(e)\) \( \frac{12}{100} \) is already in fraction form, so it's 0.12 as a decimal and 12% in percentage form. For \(f)\) with decimal value 0.65, converting this back gives \( \frac{65}{100} \) or simplified to \( \frac{13}{20} \). As a percentage, it's 65%. For \(g)\) with decimal value 0.244, you can express this as \( \frac{244}{1000} \), which doesn’t simplify well. As a percentage, it’s 24.4%. For \(h)\) with decimal value 1.5, this translates to \( \frac{3}{2} \) as a common fraction and 150% when represented as a percentage. For \(i)\) with decimal value 0.35, you can represent this as \( \frac{35}{100} \) or \( \frac{7}{20} \) when simplified. Converted to a percentage, it's 35%. Now, the completed table would look like this: \begin{tabular}{|l|c|c|c|}\hline & Common fraction & Decimal fraction & Percentage \\ \hline a) & \( \frac{3}{8} \) & 0.375 & 37.5\% \\ \hline b) & \( \frac{5}{33} \) & 0.1515 & 15.15\% \\ \hline c) & \( \frac{17}{8} \) & 2.125 & 212.5\% \\ \hline d) & \( \frac{2}{3} \) & 0.6667 & 66.67\% \\ \hline e) & \( \frac{12}{100} \) & 0.12 & 12\% \\ \hline f) & \( \frac{13}{20} \) & 0.65 & 65\% \\ \hline g) & \( \frac{244}{1000} \) & 0.244 & 24.4\% \\ \hline h) & \( \frac{3}{2} \) & 1.5 & 150\% \\ \hline i) & \( \frac{7}{20} \) & 0.35 & 35\% \\ \hline \end{tabular}

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy