3 Given that \( Y \sim \mathrm{~B}(11,0.23) \), calculate: \( \begin{array}{ll}\text { a } \mathrm{P}(Y \neq 3) & \text { b } \mathrm{P}[Y<\mathrm{E}(Y)]\end{array} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To solve the problems related to the binomial distribution \( Y \sim \mathrm{B}(11,0.23) \): **a) To find \( P(Y \neq 3) \):** First, we calculate \( P(Y = 3) \): \[ P(Y = k) = \binom{n}{k} p^k (1-p)^{n-k} \] where \( n = 11 \), \( k = 3 \), and \( p = 0.23 \). \[ P(Y = 3) = \binom{11}{3} (0.23)^3 (0.77)^{11-3} \] Calculating the components step-by-step: - Calculate \( \binom{11}{3} = \frac{11!}{3!(11-3)!} = \frac{11 \times 10 \times 9}{3 \times 2 \times 1} = 165 \). - \( (0.23)^3 \approx 0.012167 \). - \( (0.77)^8 \approx 0.097656 \). Now plug these values into the equation: \[ P(Y = 3) \approx 165 \times 0.012167 \times 0.097656 \approx 0.1931 \] Thus, \[ P(Y \neq 3) = 1 - P(Y = 3) \approx 1 - 0.1931 \approx 0.8069. \] **b) To find \( P(Y < E(Y)) \):** First, calculate the expected value \( E(Y) \): \[ E(Y) = n \cdot p = 11 \cdot 0.23 = 2.53. \] Since \( Y \) must be an integer, we look for \( P(Y < 2.53) \), which is equivalent to \( P(Y \leq 2) \). Now, calculate \( P(Y \leq 2) \): \[ P(Y = 0) = \binom{11}{0} (0.23)^0 (0.77)^{11} \approx 0.0777, \] \[ P(Y = 1) = \binom{11}{1} (0.23)^1 (0.77)^{10} \approx 0.1929, \] \[ P(Y = 2) = \binom{11}{2} (0.23)^2 (0.77)^9 \approx 0.2269. \] Adding these probabilities together: \[ P(Y \leq 2) \approx 0.0777 + 0.1929 + 0.2269 \approx 0.4975. \] Final answers: \[ \text{a) } P(Y \neq 3) \approx 0.8069, \quad \text{b) } P(Y < 2.53) \approx 0.4975. \]