Question
upstudy study bank question image url

10. (i) Show that \( 2 \sin \left(120^{\circ}-x\right)=\cos \left(x+60^{\circ}\right) \) can be \( \operatorname{simplified} \) into \( \tan x=8-5 \sqrt{3} \). (ii) Find all the angles between \( -180^{\circ} \) and \( 180^{\circ} \) which satisfy the equation \( 2 \sin \left(120^{\circ}-\theta\right)= \) \( \cos \left(\theta+60^{\circ}\right) \).

Ask by Wells Knight. in Singapore
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**(i)** After simplifying, the equation becomes \( \tan \theta = 8 - 5\sqrt{3} \). **(ii)** The solutions between \(-180^\circ\) and \(180^\circ\) are approximately \(-33.7^\circ\) and \(146.3^\circ\).

Solution

Let's solve the given trigonometric equation step by step. **Given Equation:** \[ 2 \sin (120^\circ - \theta) = \cos (\theta + 60^\circ) \] ### Part (i): Simplify to \( \tan \theta = 8 - 5\sqrt{3} \) 1. **Expand Both Sides Using Trigonometric Identities:** \[ \sin(A - B) = \sin A \cos B - \cos A \sin B \] \[ \cos(A + B) = \cos A \cos B - \sin A \sin B \] Applying these: \[ 2 \sin (120^\circ - \theta) = 2 \left[ \sin 120^\circ \cos \theta - \cos 120^\circ \sin \theta \right] \] \[ = 2 \left( \frac{\sqrt{3}}{2} \cos \theta - \left(-\frac{1}{2}\right) \sin \theta \right) \] \[ = \sqrt{3} \cos \theta + \sin \theta \] Similarly, \[ \cos (\theta + 60^\circ) = \cos \theta \cos 60^\circ - \sin \theta \sin 60^\circ \] \[ = \frac{1}{2} \cos \theta - \frac{\sqrt{3}}{2} \sin \theta \] 2. **Set the Expanded Forms Equal:** \[ \sqrt{3} \cos \theta + \sin \theta = \frac{1}{2} \cos \theta - \frac{\sqrt{3}}{2} \sin \theta \] 3. **Rearrange Terms:** \[ \sqrt{3} \cos \theta - \frac{1}{2} \cos \theta + \sin \theta + \frac{\sqrt{3}}{2} \sin \theta = 0 \] \[ \left( \sqrt{3} - \frac{1}{2} \right) \cos \theta + \left( 1 + \frac{\sqrt{3}}{2} \right) \sin \theta = 0 \] 4. **Simplify Coefficients:** \[ (2\sqrt{3} - 1) \cos \theta + (2 + \sqrt{3}) \sin \theta = 0 \] 5. **Express in Terms of \( \tan \theta \):** \[ (2\sqrt{3} - 1) \cos \theta = - (2 + \sqrt{3}) \sin \theta \] \[ \frac{\sin \theta}{\cos \theta} = -\frac{2\sqrt{3} - 1}{2 + \sqrt{3}} \] \[ \tan \theta = \frac{1 - 2\sqrt{3}}{2 + \sqrt{3}} \] 6. **Rationalize the Denominator:** \[ \tan \theta = \frac{(1 - 2\sqrt{3})(2 - \sqrt{3})}{(2 + \sqrt{3})(2 - \sqrt{3})} \] \[ = \frac{2 - \sqrt{3} - 4\sqrt{3} + 6}{4 - 3} \] \[ = \frac{8 - 5\sqrt{3}}{1} = 8 - 5\sqrt{3} \] **Therefore,** \[ \tan \theta = 8 - 5\sqrt{3} \] ### Part (ii): Find All Angles Between \(-180^\circ\) and \(180^\circ\) That Satisfy the Equation We have: \[ \tan \theta = 8 - 5\sqrt{3} \approx -0.6603 \] 1. **Find the Principal Solution:** \[ \theta \approx \tan^{-1}(-0.6603) \approx -33.69^\circ \] 2. **Find the Second Solution Within \(-180^\circ\) and \(180^\circ\):** The tangent function has a period of \(180^\circ\), so the second solution is: \[ \theta \approx -33.69^\circ + 180^\circ = 146.31^\circ \] **Therefore, the solutions are:** \[ \theta \approx -33.7^\circ \quad \text{and} \quad \theta \approx 146.3^\circ \] **Final Answer:** **(i)** After simplifying, the equation becomes tan x = 8 – 5√3. **(ii)** All solutions between –180° and 180° are approximately –33.7° and 146.3°.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To simplify the equation \( 2 \sin(120^\circ - x) = \cos(x + 60^\circ) \), we start by using the sine subtraction formula: \[ \sin(120^\circ - x) = \sin 120^\circ \cos x - \cos 120^\circ \sin x. \] Since \(\sin 120^\circ = \frac{\sqrt{3}}{2}\) and \(\cos 120^\circ = -\frac{1}{2}\), we can rewrite it as: \[ \sin(120^\circ - x) = \frac{\sqrt{3}}{2} \cos x + \frac{1}{2} \sin x. \] Multiplying by 2 gives: \[ 2\sin(120^\circ - x) = \sqrt{3} \cos x + \sin x. \] On the right side, we have: \[ \cos(x + 60^\circ) = \cos x \cos 60^\circ - \sin x \sin 60^\circ = \frac{1}{2} \cos x - \frac{\sqrt{3}}{2} \sin x. \] Setting both sides equal: \[ \sqrt{3} \cos x + \sin x = \frac{1}{2} \cos x - \frac{\sqrt{3}}{2} \sin x. \] Rearranging gives: \[ \left(\sqrt{3} - \frac{1}{2}\right) \cos x + \left(1 + \frac{\sqrt{3}}{2}\right) \sin x = 0. \] Simplifying, we can express this in terms of \( \tan x \): \[ \tan x = \frac{\text{(Coefficient of } \cos x\text{)}}{\text{(Coefficient of } \sin x\text{)}} = \frac{\sqrt{3}-\frac{1}{2}}{1 + \frac{\sqrt{3}}{2}} = 8 - 5\sqrt{3}. \] Now, for part (ii), we need to find all angles \( \theta \) in the range of \( -180^\circ \) to \( 180^\circ \) that satisfy: \[ 2 \sin(120^\circ - \theta) = \cos(\theta + 60^\circ). \] Since we have established that \( \tan \theta = 8 - 5 \sqrt{3} \), we find \(\theta\) by using the arctangent function: \[ \theta = \tan^{-1}(8 - 5 \sqrt{3}). \] Additionally, the tangent function is periodic with a period of \( 180^\circ \), so we can find the other solutions by adding \( 180^\circ \): \[ \theta = \tan^{-1}(8 - 5 \sqrt{3}) \quad \text{and} \quad \theta = \tan^{-1}(8 - 5 \sqrt{3}) + 180^\circ. \] However, since we are restricted to \( -180^\circ < \theta < 180^\circ \), we need to check if the second solution falls outside this range and adjust accordingly. The final solutions will be: \[ \theta \text{ in } \left( -180^\circ, 180^\circ \right). \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy