Question
upstudy study bank question image url

\( 48 p + 38 x ( 100 p ^ { 2 } + 2 \cdot p - 4.0 x ^ { 2 } - 2 k + 5 ) = 3800 p ^ { 2 } \)

Ask by Joseph Newton. in Mexico
Jan 15,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Para resolver la ecuación \( 48p + 38x (100p^{2} + 2p - 4x^{2} - 2k + 5) = 3800p^{2} \) para \( k \), siguiendo los pasos: 1. **Expandir la ecuación**: \[ 48p + 38x \cdot 100p^{2} + 38x \cdot 2p + 38x \cdot (-4x^{2}) + 38x \cdot (-2k) + 38x \cdot 5 = 3800p^{2} \] Simplificando: \[ 48p + 3800x p^{2} + 76x p - 152x^{3} - 76x k + 190x = 3800p^{2} \] 2. **Reorganizar la ecuación**: \[ 3800x p^{2} - 3800p^{2} + 76x p + 48p - 152x^{3} - 76x k + 190x = 0 \] Agrupando términos: \[ 3800p^{2}(x - 1) - 152x^{3} + p(76x + 48) + x(-76k + 190) = 0 \] 3. **Aislar \( k \)**: \[ -76x k = -3800p^{2}(x - 1) + 152x^{3} - 76x p - 48p - 190x \] Dividiendo ambos lados por \( -76x \): \[ k = \frac{3800p^{2}(x - 1) - 152x^{3} + 76x p + 48p + 190x}{76x} \] Simplificando: \[ k = 50p^{2}\left(\frac{x - 1}{x}\right) - 2x^{2} + p + \frac{48p}{76x} + \frac{190}{76} \] Finalmente: \[ k = 50p^{2}\left(1 - \frac{1}{x}\right) - 2x^{2} + p + \frac{48p}{76x} + \frac{190}{76} \] **Resumen**: La solución para \( k \) en términos de \( p \) y \( x \) es: \[ k = 50p^{2}\left(1 - \frac{1}{x}\right) - 2x^{2} + p + \frac{48p}{76x} + \frac{190}{76} \]

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Extra Insights

To solve this equation for \( x \), we first want to simplify and rearrange the terms. We have: \[ 48p + 38x(100p^2 + 2p - 4.0x^2 - 2k + 5) = 3800p^2. \] Rearranging gives us: \[ 38x(100p^2 + 2p - 4.0x^2 - 2k + 5) = 3800p^2 - 48p. \] Now we can isolate \( x \): \[ x = \frac{3800p^2 - 48p}{38(100p^2 + 2p - 4.0x^2 - 2k + 5)}. \] This results in an expression for \( x \) that depends on \( p \) and \( k \). You can plug in values for \( p \) and \( k \) to find specific values for \( x \). Keep in mind, depending on what you are solving for, there may be occasions when it's difficult to isolate \( x \) without knowing the parameters or constraining the equation further.

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy