Question
upstudy study bank question image url

\( \begin{array}{l}\therefore \frac{d}{d t}\left(\frac{3}{t}\right) \quad \cos t=1 \\ 2-\frac{d}{d t}\left(t^{3}+2 t-\frac{1}{\sqrt{x}}\right) \quad \ln t=2 \\ 3=\frac{d}{d x}\left(3 x^{3}+x\right) \quad \ln x=1 \\ \text { 4- } \frac{d}{d x}\left(\frac{10}{x}\right) \quad \ln x=2\end{array} \)

Ask by Bernard Boone. in Mexico
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

1. La derivada de \( \frac{3}{t} \) respecto a \( t \) es \( -\frac{3}{t^2} \) cuando \( \cos t = 1 \). 2. \( 2 - \frac{d}{dt}\left(t^{3} + 2t - \frac{1}{\sqrt{x}}\right) = -3e^{4} \) dado que \( \ln t = 2 \). 3. No existe una solución que cumpla \( 3 = \frac{d}{dx}\left(3x^{3} + x\right) \) y \( \ln x = 1 \) simultáneamente. 4. La derivada de \( \frac{10}{x} \) respecto a \( x \) es \( -\frac{10}{e^{4}} \) dado que \( \ln x = 2 \).

Solution

Claro, a continuación se presentan las soluciones a los ejercicios propuestos: --- **1. Calcular la derivada de \( \frac{3}{t} \) respecto a \( t \) dado que \( \cos t = 1 \).** Primero, encontramos la derivada: \[ \frac{d}{dt}\left(\frac{3}{t}\right) = \frac{d}{dt}\left(3t^{-1}\right) = -3t^{-2} = -\frac{3}{t^2} \] Ahora, determinamos el valor de \( t \) cuando \( \cos t = 1 \). Sabemos que: \[ \cos t = 1 \quad \Rightarrow \quad t = 2\pi k, \quad \text{donde } k \in \mathbb{Z} \] Por lo tanto, la derivada evaluada en estos puntos es: \[ -\frac{3}{(2\pi k)^2} = -\frac{3}{4\pi^2 k^2} \] --- **2. Calcular \( 2 - \frac{d}{dt}\left(t^{3} + 2t - \frac{1}{\sqrt{x}}\right) \) dado que \( \ln t = 2 \).** Primero, derivamos la expresión respecto a \( t \): \[ \frac{d}{dt}\left(t^{3} + 2t - \frac{1}{\sqrt{x}}\right) = 3t^{2} + 2 - 0 = 3t^{2} + 2 \] Luego, sustituimos en la expresión inicial: \[ 2 - (3t^{2} + 2) = 2 - 3t^{2} - 2 = -3t^{2} \] Ahora, encontramos el valor de \( t \) a partir de \( \ln t = 2 \): \[ \ln t = 2 \quad \Rightarrow \quad t = e^{2} \] Finalmente, sustituimos \( t \): \[ -3t^{2} = -3(e^{2})^{2} = -3e^{4} \] --- **3. Resolver la ecuación \( 3 = \frac{d}{dx}\left(3x^{3} + x\right) \) dado que \( \ln x = 1 \).** Primero, encontramos la derivada: \[ \frac{d}{dx}\left(3x^{3} + x\right) = 9x^{2} + 1 \] Sustituimos en la ecuación dada: \[ 3 = 9x^{2} + 1 \quad \Rightarrow \quad 9x^{2} = 2 \quad \Rightarrow \quad x^{2} = \frac{2}{9} \quad \Rightarrow \quad x = \pm \frac{\sqrt{2}}{3} \] Sin embargo, se nos da que \( \ln x = 1 \): \[ \ln x = 1 \quad \Rightarrow \quad x = e^{1} = e \] Comparando ambos resultados, observamos que no existe una solución que satisfaga simultáneamente \( x = e \) y \( x = \pm \frac{\sqrt{2}}{3} \). Por lo tanto, no hay un valor de \( x \) que cumpla ambas condiciones. --- **4. Calcular la derivada de \( \frac{10}{x} \) respecto a \( x \) dado que \( \ln x = 2 \).** Primero, encontramos la derivada: \[ \frac{d}{dx}\left(\frac{10}{x}\right) = \frac{d}{dx}\left(10x^{-1}\right) = -10x^{-2} = -\frac{10}{x^{2}} \] Ahora, determinamos el valor de \( x \) a partir de \( \ln x = 2 \): \[ \ln x = 2 \quad \Rightarrow \quad x = e^{2} \] Finalmente, sustituimos \( x \): \[ -\frac{10}{x^{2}} = -\frac{10}{(e^{2})^{2}} = -\frac{10}{e^{4}} \] --- Espero que estas soluciones te sean de ayuda.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

The derivative calculations you provided hint at the underlying concepts of calculus, where derivatives indicate the rate of change of a function. For example, \(\frac{d}{dt}\left(\frac{3}{t}\right) = -\frac{3}{t^2}\). Understanding these derivatives opens the door to the fundamental theorem of calculus, which bridges the relationship between differentiation and integration. In the real world, derivatives play an essential role in fields like physics, engineering, and economics. For instance, they help determine velocity from position functions, optimize profit margins in businesses, and assess the elasticity of demand in economics. Recognizing these applications brings calculus to life, illustrating how these abstract concepts influence the mechanics of our day-to-day activities!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy