Mutiply then Simplify. (1) \( \sqrt[3]{60^{4}} \cdot \sqrt[3]{18 a} \) (2) \( \sqrt{35} \cdot \sqrt{21} \cdot \sqrt{18} \) (3) \( \sqrt[3]{36 m^{4} n^{5} p^{3}} \cdot \sqrt{6 m n^{2} p^{3}} \) \( (\sqrt{3}-4)(\sqrt{3}+4) \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To solve the given expressions, let's tackle them one by one: (1) Calculation: \[ \sqrt[3]{60^4} \cdot \sqrt[3]{18a} = \sqrt[3]{60^4 \cdot 18a} = \sqrt[3]{(60^4 \cdot 18) a} \] To simplify \(60^4 \cdot 18\), we find \(60^4 = (2^2 \cdot 3 \cdot 5)^4 = 2^8 \cdot 3^4 \cdot 5^4\) and \(18 = 2 \cdot 3^2\). So, \(60^4 \cdot 18 = 2^9 \cdot 3^6 \cdot 5^4\). Simplifying this gives us \( = \sqrt[3]{2^9 \cdot 3^6 \cdot 5^4a} = 2^{3} \cdot 3^{2} \cdot 5^{\frac{4}{3}} \sqrt[3]{a} = 8 \cdot 9 \cdot 5^{\frac{4}{3}} \sqrt[3]{a} = 72 \cdot 5^{\frac{4}{3}} \sqrt[3]{a} = 72 \cdot 5^{1} \cdot \sqrt[3]{5} \cdot \sqrt[3]{a} = 360 \cdot \sqrt[3]{5a}. \] (2) Calculation: \[ \sqrt{35} \cdot \sqrt{21} \cdot \sqrt{18} = \sqrt{35 \cdot 21 \cdot 18} = \sqrt{(5 \cdot 7)(3 \cdot 7)(2 \cdot 9)} = \sqrt{5 \cdot 7^2 \cdot 3 \cdot 2 \cdot 9} \] Here we simplify \(9 = 3^2\), thus this equals: \( = \sqrt{(5 \cdot 2) (3^3)(7^2)} = \sqrt{10 \cdot 27 \cdot 49} = \sqrt{10} \cdot 21 = 21\sqrt{10}. \] (3) Calculation: \[ \sqrt[3]{36 m^4 n^5 p^3} \cdot \sqrt{6 m n^2 p^3} = \sqrt[3]{36} \cdot m^{\frac{4}{3}} \cdot n^{\frac{5}{3}} \cdot p^{1} \cdot \sqrt{6} \cdot m^{\frac{1}{2}} \cdot n^{1} \cdot p^{\frac{3}{2}}. \] For \( \sqrt[3]{36} = 6^{\frac{1}{3}}\) and \( \sqrt{6} = 6^{\frac{1}{2}}\). The total becomes: \(6^{\frac{1}{3} + \frac{1}{2}} m^{\frac{4}{3} + \frac{1}{2}} n^{\frac{5}{3} + 1} p^{\frac{3}{2} + 1}\). Converting to a common denominator, we get the answer of \(6^{\frac{5}{6}} m^{\frac{11}{6}} n^{\frac{8}{3}} p^{\frac{5}{2}}.\) (4) For the expression \((\sqrt{3}-4)(\sqrt{3}+4)\), we can use the difference of squares formula: \[ (\sqrt{3})^2 - 4^2 = 3 - 16 = -13. \] Combining all final results: 1) \(360\sqrt[3]{5a}\) 2) \(21\sqrt{10}\) 3) \(6^{\frac{5}{6}} m^{\frac{11}{6}} n^{\frac{8}{3}} p^{\frac{5}{2}}\) 4) \(-13\)