Question
upstudy study bank question image url

Let \( \vec{a} \) and \( b \) be the vectors given by \( \vec{a}=\langle 2,0,-1\rangle \) and \( b=\langle 1,-1,3\rangle \). (1) Compute (i) \( \|\vec{a}\| \) and \( \|\vec{b}\| \) (ii) \( \vec{a} \cdot \vec{a}, \vec{a} \cdot \vec{b} \) in two different ways. (iii) \( \vec{a} \times \vec{b} \) and \( \vec{b} \times \vec{b} \) (2) Assume that \( \theta \) is the angle between the two vectors \( \vec{a} \) and \( \vec{b} \). Write down \( \cos \theta \) in terms of \( \vec{a} \cdot \vec{b} \) and \( \|\vec{a}\| \) and \( \|\vec{b}\| \). Deduce \( \cos \theta \) and find the angle \( \theta \) between the two vectors. (3) Find an equation of the plane \( P \) containing \( \vec{a} \) and \( \vec{b} \)

Ask by Hampton Ingram. in South Africa
Nov 20,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

### (1) Compute #### (i) \( \|\vec{a}\| \) and \( \|\vec{b}\| \) \[ \|\vec{a}\| = \sqrt{5}, \|\vec{b}\| = \sqrt{11} \] #### (ii) \( \vec{a} \cdot \vec{a} \) and \( \vec{a} \cdot \vec{b} \) \[ \vec{a} \cdot \vec{a} = 5, \vec{a} \cdot \vec{b} = -1 \] #### (iii) \( \vec{a} \times \vec{b} \) and \( \vec{b} \times \vec{b} \) \[ \vec{a} \times \vec{b} = \langle -1, -7, -2 \rangle, \vec{b} \times \vec{b} = \vec{0} \] ### (2) Angle \( \theta \) between \( \vec{a} \) and \( \vec{b} \) \[ \cos \theta = \frac{-1}{\sqrt{55}}, \theta = \cos^{-1}\left(\frac{-1}{\sqrt{55}}\right) \] ### (3) Equation of the plane \( P \) containing \( \vec{a} \) and \( \vec{b} \) \[ x + 7y + 2z = 2 \]

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Bonus Knowledge

To tackle the tasks involving vectors \( \vec{a}=\langle 2,0,-1\rangle \) and \( \vec{b}=\langle 1,-1,3\rangle \), let's jump right in! ### (1) (i) The magnitudes \( \|\vec{a}\| \) and \( \|\vec{b}\| \) can be computed as follows: \[ \|\vec{a}\| = \sqrt{2^2 + 0^2 + (-1)^2} = \sqrt{4 + 0 + 1} = \sqrt{5}. \] \[ \|\vec{b}\| = \sqrt{1^2 + (-1)^2 + 3^2} = \sqrt{1 + 1 + 9} = \sqrt{11}. \] (ii) For the dot products: \[ \vec{a} \cdot \vec{a} = 2^2 + 0^2 + (-1)^2 = 4 + 0 + 1 = 5. \] \[ \vec{a} \cdot \vec{b} = 2 \cdot 1 + 0 \cdot (-1) + (-1) \cdot 3 = 2 + 0 - 3 = -1. \] (iii) The cross product \( \vec{a} \times \vec{b} \): \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & -1 \\ 1 & -1 & 3 \end{vmatrix} = \hat{i}(0 \cdot 3 - (-1) \cdot (-1)) - \hat{j}(2 \cdot 3 - (-1) \cdot 1) + \hat{k}(2 \cdot (-1) - 0 \cdot 1) = \hat{i}(0 - 1) - \hat{j}(6 + 1) + \hat{k}(-2) = -\hat{i} - 7\hat{j} - 2\hat{k}. \] Thus, \[ \vec{a} \times \vec{b} = \langle -1, -7, -2 \rangle. \] The cross product \( \vec{b} \times \vec{b} \) is zero since any vector crossed with itself is zero: \[ \vec{b} \times \vec{b} = \langle 0, 0, 0 \rangle. \] ### (2) For the angle \( \theta \) between the two vectors, we use the formula: \[ \cos \theta = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \|\vec{b}\|}. \] Substituting the values we found: \[ \cos \theta = \frac{-1}{\sqrt{5} \cdot \sqrt{11}} = \frac{-1}{\sqrt{55}}. \] Now, to find \( \theta \): \[ \theta = \cos^{-1}\left(\frac{-1}{\sqrt{55}}\right). \] ### (3) To find the equation of the plane \( P \) containing the vectors \( \vec{a} \) and \( \vec{b} \), we can use the normal vector which is obtained from the cross product, \( \vec{n} = \vec{a} \times \vec{b} = \langle -1, -7, -2 \rangle \). The equation of the plane can be written as: \[ -1(x - x_0) - 7(y - y_0) - 2(z - z_0) = 0 \] Where \( (x_0, y_0, z_0) \) is a point on the plane. To use \( \vec{a} = (2,0,-1) \): \[ -1(x - 2) - 7(y - 0) - 2(z - (-1)) = 0. \] Thus, simplifying gives: \[ -1x + 2 - 7y - 2z - 2 = 0 \rightarrow x + 7y + 2z = 0. \] So the equation of the plane \( P \) is \( x + 7y + 2z = 0 \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy