Answer
1) \( 8x^{3}y^{4} \cdot (-5x^{2}y^{5})^{3} = -1000x^{9}y^{19} \)
2) \( (3a^{2} + 10a - 9) - (a^{2} + 2a - 8) = 2a^{2} + 8a - 1 \)
3) \( (5a - 7) + (-3a^{2} - 7a - 12) = -3a^{2} - 2a - 19 \)
4) \( (7 - b)^{2} - 33 = 16 - 14b + b^{2} \)
5) \( x(x + 7) - (x - 6)^{2} = 19x - 36 \)
Solution
Simplify the expression by following steps:
- step0: Subtract the terms:
\(\left(7-b\right)^{2}-33\)
- step1: Expand the expression:
\(49-14b+b^{2}-33\)
- step2: Subtract the numbers:
\(16-14b+b^{2}\)
Expand the expression \( 8 x^{3} y^{4} \cdot\left(-5 x^{2} y^{5}\right)^{3} \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(8x^{3}y^{4}\left(-5x^{2}y^{5}\right)^{3}\)
- step1: Rewrite the expression:
\(8x^{3}y^{4}\left(-125x^{6}y^{15}\right)\)
- step2: Multiply the numbers:
\(-1000x^{3}y^{4}x^{6}y^{15}\)
- step3: Multiply the terms:
\(-1000x^{9}y^{4}\times y^{15}\)
- step4: Multiply the terms:
\(-1000x^{9}y^{19}\)
Expand the expression \( (5 a-7)+\left(-3 a^{2}-7 a-12\right) \)
Simplify the expression by following steps:
- step0: Simplify:
\(\left(5a-7\right)+\left(-3a^{2}-7a-12\right)\)
- step1: Remove the parentheses:
\(5a-7-3a^{2}-7a-12\)
- step2: Subtract the terms:
\(-2a-19-3a^{2}\)
Expand the expression \( x(x+7)-(x-6)^{2} \)
Simplify the expression by following steps:
- step0: Subtract the terms:
\(x\left(x+7\right)-\left(x-6\right)^{2}\)
- step1: Expand the expression:
\(x^{2}+7x-\left(x-6\right)^{2}\)
- step2: Expand the expression:
\(x^{2}+7x-x^{2}+12x-36\)
- step3: Collect like terms:
\(19x-36\)
Expand the expression \( \left(3 a^{2}+10 a-9\right)-\left(a^{2}+2 a-8\right) \)
Simplify the expression by following steps:
- step0: Simplify:
\(\left(3a^{2}+10a-9\right)-\left(a^{2}+2a-8\right)\)
- step1: Remove the parentheses:
\(3a^{2}+10a-9-\left(a^{2}+2a-8\right)\)
- step2: Remove the parentheses:
\(3a^{2}+10a-9-a^{2}-2a+8\)
- step3: Subtract the terms:
\(2a^{2}+8a-1\)
Вот решения для каждого из выражений:
1) Для выражения \( 8 x^{3} y^{4} \cdot\left(-5 x^{2} y^{5}\right)^{3} \):
\[
8 x^{3} y^{4} \cdot\left(-5 x^{2} y^{5}\right)^{3} = -1000x^{9}y^{19}
\]
2) Для выражения \( \left(3 a^{2}+10 a-9\right)-\left(a^{2}+2 a-8\right) \):
\[
\left(3 a^{2}+10 a-9\right)-\left(a^{2}+2 a-8\right) = 2a^{2}+8a-1
\]
3) Для выражения \( (5 a-7)+\left(-3 a^{2}-7 a-12\right) \):
\[
(5 a-7)+\left(-3 a^{2}-7 a-12\right) = -3a^{2}-2a-19
\]
4) Для выражения \( (7-b)^{2}-33 \):
\[
(7-b)^{2}-33 = 16-14b+b^{2}
\]
5) Для выражения \( x(x+7)-(x-6)^{2} \):
\[
x(x+7)-(x-6)^{2} = 19x-36
\]
Если у вас есть дополнительные вопросы или нужно что-то еще, дайте знать!
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution