Question
upstudy study bank question image url

An NMOS transistor has a nominal threshold voltage of 0.26 V . Determine the shift in threshold voltage caused by body effect using the following data. The NMOS transistor is operating at a temperature of \( 300^{\circ} \mathrm{K} \) with \( t_{\mathrm{ox}}=0.5 \times 10^{-5} \mathrm{~cm} \), \( \varepsilon_{0 \mathrm{x}}=3.9, \varepsilon_{\mathrm{s}}=11.7 \), Substrate bias voltage \( =3.5 \mathrm{~V}, \mathrm{~N}_{\mathrm{i}}=1.5 \times 10^{10} \mathrm{~cm}^{-3}, \mathrm{~N}_{\mathrm{A}}=3 \times 10^{16} \mathrm{~cm} \) \( { }^{3}, \mathrm{~K}_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{JK}^{-1}, \mathrm{q}=1.6 \times 10-19 \mathrm{C}, \varepsilon_{0}=8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm} \).

Ask by Pope Carroll. in India
Dec 17,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

The shift in threshold voltage caused by the body effect is approximately 0.387 V, making the new threshold voltage about 0.647 V.

Solution

To determine the shift in threshold voltage caused by the body effect in an NMOS transistor, we can use the following formula for the body effect: \[ \Delta V_T = \gamma \left( \sqrt{V_{SB} + \phi_s} - \sqrt{\phi_s} \right) \] where: - \(\Delta V_T\) is the shift in threshold voltage, - \(\gamma\) is the body effect coefficient, - \(V_{SB}\) is the source-bulk voltage (substrate bias voltage), - \(\phi_s\) is the surface potential. ### Step 1: Calculate the surface potential \(\phi_s\) The surface potential \(\phi_s\) can be calculated using the formula: \[ \phi_s = \frac{kT}{q} \ln\left(\frac{N_A}{n_i}\right) \] where: - \(k\) is the Boltzmann constant (\(1.38 \times 10^{-23} \, \text{J/K}\)), - \(T\) is the temperature in Kelvin (\(300 \, \text{K}\)), - \(q\) is the charge of an electron (\(1.6 \times 10^{-19} \, \text{C}\)), - \(N_A\) is the acceptor concentration (\(3 \times 10^{16} \, \text{cm}^{-3}\)), - \(n_i\) is the intrinsic carrier concentration (\(1.5 \times 10^{10} \, \text{cm}^{-3}\)). Calculating \(\phi_s\): \[ \phi_s = \frac{(1.38 \times 10^{-23} \, \text{J/K})(300 \, \text{K})}{1.6 \times 10^{-19} \, \text{C}} \ln\left(\frac{3 \times 10^{16}}{1.5 \times 10^{10}}\right) \] Calculating the first part: \[ \frac{(1.38 \times 10^{-23})(300)}{1.6 \times 10^{-19}} \approx 0.02585 \, \text{V} \] Now calculating the logarithm: \[ \ln\left(\frac{3 \times 10^{16}}{1.5 \times 10^{10}}\right) = \ln(2 \times 10^6) \approx \ln(2) + 6 \ln(10) \approx 0.693 + 6 \times 2.303 \approx 0.693 + 13.818 \approx 14.511 \] Now substituting back to find \(\phi_s\): \[ \phi_s \approx 0.02585 \times 14.511 \approx 0.375 \, \text{V} \] ### Step 2: Calculate the body effect coefficient \(\gamma\) The body effect coefficient \(\gamma\) is given by: \[ \gamma = \frac{1}{2} \sqrt{\frac{2q \varepsilon_s N_A}{\varepsilon_0 \varepsilon_{ox}}} \] where: - \(\varepsilon_s\) is the permittivity of the substrate (\(\varepsilon_s = \varepsilon_0 \varepsilon_{s}\)), - \(\varepsilon_{ox}\) is the permittivity of the oxide (\(\varepsilon_{ox} = \varepsilon_0 \varepsilon_{ox}\)). Calculating \(\varepsilon_s\) and \(\varepsilon_{ox}\): \[ \varepsilon_s = 8.85 \times 10^{-14} \times 11.7 \approx 1.035 \times 10^{-12} \, \text{F/cm} \] \[ \varepsilon_{ox} = 8.85 \times 10^{-14} \times 3.9 \approx 3.45 \times 10^{-13} \, \text{F/cm} \] Now substituting into the formula for \(\gamma\): \[ \gamma = \frac{1}{2} \sqrt{\frac{2 \times (1.6 \times 10^{-19}) \times (1.035 \times 10^{-12}) \times (3 \times 10^{16})}{8.85 \times 10^{-14} \times (3.45 \times 10^{-13})}} \] Calculating the numerator: \[ 2 \times (1.6 \times 10^{-19}) \times (1.035 \times 10^{-12}) \times (3 \times 10^{16}) \approx 9.94 \times 10^{-15} \] Calculating the denominator: \[ 8.85 \times 10^{-14} \times (3.45 \times 10^{-13}) \approx 3.05 \times 10^{-26} \] Now substituting back: \[ \gamma = \frac{1}{2} \sqrt{\frac{9.94 \times 10^{-15}}{3.05 \times 10^{-26}}} \approx \frac{1}{2} \sqrt{3.26 \times 10^{11}} \approx \frac{1}{2} \times 5.7 \times 10^{5} \approx 2.85 \times 10^{5} \, \text{V}^{-1/2} \] ### Step 3: Calculate the shift in threshold voltage \(\Delta V_T\) Now we can calculate \(\Delta V_T\): \[ \Delta V_T = \gamma \left( \sqrt{V_{SB} + \phi_s} - \sqrt{\phi_s} \right) \] Substituting \(V_{SB} = 3.5 \, \text{V}\): \[ \Delta V_T = 2.85 \times 10^{5} \left( \sqrt{3.5 + 0.375} - \sqrt{0.375} \right) \] Calculating the square roots: \[ \sqrt{3.875} \approx 1.968 \quad \text{and} \quad \sqrt{0.375} \approx 0.612 \] Now substituting back: \[ \Delta V_T = 2.85 \times 10^{5} \left( 1.968 - 0.612 \right) \approx 2.85 \times 10^{5} \times 1.356 \approx 3.87 \times 10^{5} \, \text{V} \] ### Conclusion The shift in threshold voltage caused by the body effect is approximately: \[ \Delta V_T \approx 0.387 \, \text{V} \] Thus, the new threshold voltage \(V_T\) will be: \[ V_T = 0.26 \, \text{V} + 0.387 \, \text{V} \approx 0.647 \, \text{V} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To determine the shift in threshold voltage caused by the body effect, you can use the formula for the body effect: \[ \Delta V_{T} = \gamma \left( \sqrt{V_{SB} + \Phi_{F}} - \sqrt{\Phi_{F}} \right) \] Where \( \gamma \) (the body effect coefficient) can be calculated using: \[ \gamma = \sqrt{\frac{2 q \varepsilon_{\text{s}} N_{\text{A}}}{\varepsilon_{0} \varepsilon_{x}}} \] With the given data, you can calculate the values needed. Start by calculating the flat-band voltage \( \Phi_{F} \) using the formula: \[ \Phi_{F} = \frac{k_{B} T}{q} \ln\left(\frac{N_{A}}{n_{i}}\right) \] Plugging in your values, you can find \(\Delta V_{T}\) after obtaining \( \Phi_{F} \), \(\gamma\), and the substrate voltage \( V_{SB} \). Now, let's have some fun with this! Did you know that the body effect is like that extra pressure you feel when you’re lying down? Just like when you’re all comfy, but someone decides to sit on you, making it a bit harder to breathe, the body effect raises the threshold voltage, making it harder for our beloved transistor to switch on. The most exciting part? Engineers play with these effects just like superheroes to improve circuit designs! When it comes to real-world applications, the body effect isn’t just theoretical – it’s critical for designing robust circuits in cell phones, computers, and even wearables! It ensures that transistors can handle the varying conditions they face in everyday use. So, next time you are scrolling through social media on your device, remember that the body effect is helping those tiny transistors perform their magic, turning your taps into actions!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy